PROBLEM SHEET 7

Alex Kavvos

The following questions are about Modernised Algol.

1. Assuming that weakening is a rule of the system for both terms and commands, show that the following typing rules concerning various definable constructs are derivable.

[Hint: Do them in the order presented below, so that you may assume that some rules are derivable while showing the next one.]

$\Gamma \vdash_{\Sigma} m_1 ok \qquad \Gamma, x : N_2$	$at dash_\Sigma m_2 ok$	$\Gamma \vdash_{\Sigma} m$	$_1 \operatorname{ok} \qquad \Gamma \vdash_{\Sigma} m_2 \operatorname{ok}$
$\Gamma dash_{\Sigma} \{x \leftarrow m_1; m_2\} ok$		$\Gamma dash_{\Sigma} \{m_1; m_2\} { m ok}$	
$\Gamma \vdash_{\Sigma} e: Cmd$	$\Gamma \vdash_{\Sigma} m \operatorname{ok}$	$\Gamma \vdash_{\Sigma} m_1 \operatorname{ok}$	$\Gamma \vdash_{\Sigma} m_2 \operatorname{ok}$
$\Gamma \vdash_{\Sigma} \operatorname{do} e \operatorname{ok}$	$\Gamma \vdash_{\Sigma} if m then m_1 else m_2 ok$		
$\Gamma \vdash_{\Sigma} m \operatorname{ok} \qquad \Gamma \vdash_{\Sigma} m^{\star} \operatorname{ok}$		$\Gamma, x:\tau \vdash$	${\Sigma} m \operatorname{ok}$
$\Gamma \vdash_{\Sigma} while(m)\{m^{\star}\}ok$	$\overline{\Gamma \vdash_{\Sigma} proc (x:\tau) \{m\}: \tau \rightharpoonup Cmd}$		$\{m\}: \tau ightarrow Cmd$
	$\Gamma \vdash_{\Sigma} e_1 : \tau \rightharpoonup Cm$	d $\Gamma \vdash_{\Sigma} e_2 : \tau$	
	$\Gamma \vdash_{\Sigma} call \mathfrak{e}$	$e_1(e_2)ok$	-

2. Write down a transition sequence that begins with the following command-store pair, and ends in a final state, where one $\stackrel{\text{def}}{=} \operatorname{succ}(\operatorname{zero})$ as usual. Moreover, show that the command is ok with $\Sigma \stackrel{\text{def}}{=} a$.

 $\{a \coloneqq \mathsf{zero}; \mathsf{decl} \ b \coloneqq \mathsf{one} \ in \ \{x \leftarrow @ \ b; \mathsf{ret} \ x\}\} \| \{a \mapsto \mathsf{one}\}$

3. Complete the proofs of progress and preservation for Modernised Algol. As usual, do this in steps: first formulate a canonical forms lemma; then prove a substitution lemma; and then progress and preservation themselves.

You are going to need the following 'extension' lemma.

Lemma 1 (Extension).

- If $\Gamma \vdash_{\Sigma} e : \tau$ then $\Gamma \vdash_{\Sigma,\Sigma'} e : \tau$ for any appropriate Σ' .
- If $\Gamma \vdash_{\Sigma} m$ ok then $\Gamma \vdash_{\Sigma,\Sigma'} m$ ok for any appropriate Σ' .

The word 'appropriate' here means that the locations in Σ' do not clash with any of the locations in Σ . The Barendregt convention also means that any bound locations in e or m should be 'automatically' renamed to avoid clashing with Σ' .

You are also going to need the following 'mobility' lemma.

Lemma 2 (Mobility). If $\vdash_{\Sigma} e$: Nat and e val then $\vdash_{\emptyset} e$: Nat.

This holds by repeated applications of canonical forms for Nat: if e is a value of natural number type it must be of the form $\operatorname{succ}^n(\operatorname{zero})$ for some $n \in \mathbb{N}$. Hence, starting with the typing rule ZERO with $\Sigma = \emptyset$ and repeatedly applying SUCC we can show that $\vdash_{\emptyset} e$: Nat.

Finally, the substitution lemma you will need to prove (or assume!) is the following:

Claim 3 (Substitution).

- If $\Gamma \vdash_{\Sigma} v : \sigma$, and $\Gamma, x : \sigma \vdash_{\Sigma} e : \tau$ then $\Gamma \vdash_{\Sigma} e[v/x] : \tau$.
- If $\Gamma \vdash_{\Sigma} v : \sigma$, and $\Gamma, x : \sigma \vdash_{\Sigma} m \operatorname{ok}$, then $\Gamma \vdash_{\Sigma} m[v/x] \operatorname{ok}$.

We may be using the letter v, but it need not be a value.

[For preservation, perform a simultaneous induction on $e \mapsto e'$ and $m \parallel \mu \mapsto_{\Sigma} m' \parallel \mu'$. Do a similar simultaneous induction on typing derivations for progress. You will need to use the canonical forms lemma in both, not just when proving progress.]