
COMSM0067: Advanced Topics in Programming Languages

Problem Sheet 4
Alex Kavvos

The following questions are about the simply-typed λ-calculus (STLC).

1. Draw derivations that evidence the following typing judgements.

(i) x : Str + (Str × Num) ⊢ case(x; y. y; z. π1(z)) : Str
(ii) ⊢ λx : Str + Num. case(x; y. inr(y); z. inl(z)) : Str + Num → Num + Str
(iii) f : Num × Str → Num, x : Str ⊢ f(⟨num[0], x⟩) : Num

2. Write down transition sequences that reduce the following terms to values.

(i) case(inr(⟨str[‘hi’], num[0]⟩); y. y; z. π1(z))

(ii) (λx : Str + Num. case(x; y. inr(y); z. inl(z)))(inl(num[0]))

(iii) (λz. π1(z))(⟨num[0], str[‘hi’]⟩)

3. This question is about modelling the following Haskell data type in the simply-typed λ-calculus.

data MaybeString = Nothing | Just String

Intuitively, we expect this data type MaybeStr to have the following typing rules.

Nothing

Γ ⊢ Nothing : MaybeStr

Just
Γ ⊢ e : Str

Γ ⊢ Just(e) : MaybeStr

Match
Γ ⊢ e : MaybeStr Γ ⊢ en : τ Γ, x : Str ⊢ ej : τ

Γ ⊢ match(e; en;x. ej) : τ

The first term represents Nothing, and the second term that represents Just e, where
e ::ۏ String.

The third term performs pattern matching. It first examines e: if that is a Nothing it returns
en; if it is a Just(e) with e : Str, it substitutes e for x in ej . Thus match(−; en;x. ej) corresponds
to the definition

f Nothing = e_n
f (Just x) = e_j −− this clause can use the variable x :: String

(i) Write down a representation of this type in the STLC. [Hint: use 1.]

(ii) Show that the three rules Nothing, Just and Match above are definable. That is, show
the terms Nothing, Just(e) and match(e; en;x. ej) can be expanded into some term of the
STLC, which is such that the typing rules are derivable if we assume that weakening is a
typing rule of the system.

Monday 7th October, 2024



4. (∗) Prove progress and preservation for the constants-and-functions fragment of the STLC.

The constants-and-function fragment of the STLC is an extension to the language of numbers
and strings: we reached it by adding the rules for function types. Thus, to establish these
theorems you only need to show them for the new function rules, as last week’s proofs
cover the rest! (We will ignore sums and products in this question!)

Do this in steps:

1. Extend the key lemmata (you may assume weakening, but you can also prove it if you feel
like it):

(a) Inversion

(b) Substitution

(c) Canonical forms

2. Prove preservation

3. Prove progress

2


