PROBLEM SHEET 4

Alex Kavvos

The following questions are about the simply-typed λ -calculus (STLC).

- 1. Draw derivations that evidence the following typing judgements.
 - (i) $x : \mathsf{Str} + (\mathsf{Str} \times \mathsf{Num}) \vdash \mathsf{case}(x; y, y; z, \pi_1(z)) : \mathsf{Str}$
 - (ii) $\vdash \lambda x : \mathsf{Str} + \mathsf{Num. case}(x; y. \mathsf{inr}(y); z. \mathsf{inl}(z)) : \mathsf{Str} + \mathsf{Num} \rightarrow \mathsf{Num} + \mathsf{Str}$
 - (iii) $f: \mathsf{Num} \times \mathsf{Str} \to \mathsf{Num}, x: \mathsf{Str} \vdash f(\langle \mathsf{num}[0], x \rangle): \mathsf{Num}$
- 2. Write down transition sequences that reduce the following terms to values.
 - (i) case(inr($\langle str['hi'], num[0] \rangle$); $y. y; z. \pi_1(z)$)
 - (ii) $(\lambda x : \mathsf{Str} + \mathsf{Num. case}(x; y. \mathsf{inr}(y); z. \mathsf{inl}(z)))(\mathsf{inl}(\mathsf{num}[0]))$
 - (iii) $(\lambda z. \pi_1(z))(\langle \mathsf{num}[0], \mathsf{str}['hi'] \rangle)$
- 3. This question is about modelling the following Haskell data type in the simply-typed λ -calculus.

Intuitively, we expect this data type MaybeStr to have the following typing rules.

Nothing		JU	$\Gamma \vdash e: Str$	
$\Gamma \vdash Nothing$: MaybeStr	$\overline{\Gamma}$	$\vdash Just(e) : MaybeStr$	
	M_{ATCH} $\Gamma \vdash e : MaybeStr$	$\Gamma \vdash e_n : \tau$	$\Gamma, x: Str \vdash e_j: \tau$	
	$\Gamma \vdash n$	$\Gamma \vdash match(e; e_n; x. e_j) : \tau$		

The first term represents Nothing, and the second term that represents Just e, where e :: String.

The third term performs **pattern matching**. It first examines e: if that is a Nothing it returns e_n ; if it is a $\mathsf{Just}(e)$ with e: Str, it substitutes e for x in e_j . Thus $\mathsf{match}(-; e_n; x. e_j)$ corresponds to the definition

f Nothing = e_n
f (Just x) = e_j -- this clause can use the variable x :: String

- (i) Write down a representation of this type in the STLC. [Hint: use 1.]
- (ii) Show that the three rules NOTHING, JUST and MATCH above are definable. That is, show the terms Nothing, Just(e) and $match(e; e_n; x. e_j)$ can be expanded into some term of the STLC, which is such that the typing rules are derivable if we assume that weakening is a typing rule of the system.

4. (*) Prove progress and preservation for the constants-and-functions fragment of the STLC.

The constants-and-function fragment of the STLC is an extension to the language of numbers and strings: we reached it by *adding* the rules for function types. Thus, to establish these theorems **you only need to show them for the new function rules**, as last week's proofs cover the rest! (We will ignore sums and products in this question!)

Do this in steps:

- 1. Extend the key lemmata (you may assume weakening, but you can also prove it if you feel like it):
 - (a) Inversion
 - (b) Substitution
 - (c) Canonical forms
- 2. Prove preservation
- 3. Prove progress