
COMSM0067: Advanced Topics in Programming Languages

Canonicity
Alex Kavvos

Reading: arXiv:1907.11133

Recall the following special case of a property of the simply-typed λ-calculus:

Theorem 1 (Canonicity). For every ` e : Num there exists a v val such that e 7−→∗ v.

In other words, every ` e : Num can be reduced to a canonical form, i.e. num[n]: by preservation we must also
have that ` v : Num; as it is also a value v must be of the form num[n] by the canonical forms lemma.

Induction does not suffice to prove canonicity. The reasons are somewhat deep. However, we are able to prove
it through the technique of logical relations. Recall that a unary relation is often called a predicate.

1 Outline

Consider the STLC (without strings). Define a predicate e ∈ Pτ on pre-terms by induction on types.

e ∈ PNum ≡ ∃v. v val ∧ e 7−→∗ v

e ∈ Pσ×τ ≡ π1(e) ∈ Pσ ∧ π2(e) ∈ Pτ

e1 ∈ Pσ→τ ≡ ∀e2 ∈ Pσ. e1(e2) ∈ Pτ

e ∈ Pσ+τ ≡ (∃u. e 7−→∗ inl(u) ∧ u ∈ Pσ) ∨ (∃w. w 7−→∗ inr(w) ∧ w ∈ Pτ )

We will prove the following result.

Lemma 2. If ` e : τ then e ∈ Pτ .

Consequently, if ` e : Num then e ∈ PNum. Thus there exists a numerical v val with e 7−→∗ v.

2 Substitutions

Unfortunately, Lemma 2 is not strong enough to be proved by induction. We need to strengthen the IH.

Let x, y, . . . ∈ V be the set of variables.

A substitution is a finite map γ : V ⇀ PreTerm mapping variables to pre-terms.

We define e[γ] inductively as before; for example

x[γ]
def' γ(x)

(e1(e2))[γ]
def' e1[γ](e2[γ])

...

Finally, given a context Γ define

γ ⊨ Γ
def≡ ∀(x : σ) ∈ Γ. γ(x) ∈ Pσ

We will then prove

Lemma 3. If Γ ` e : τ and γ ⊨ Γ then e[γ] ∈ Pτ .

From this Lemma 2 follows by picking Γ to be the empty context. What is more, this can be shown by induction!

Monday 18th September, 2023

https://arxiv.org/abs/1907.11133
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems#Second_incompleteness_theorem


3 Some cases of the proof

First, another lemma:

Lemma 4. If e1 7−→ e2 and e2 ∈ Pσ then e1 ∈ Pσ .

Proof. By induction on σ.

We can then produce a

Proof of Lemma 3. By induction on the derivation of Γ ` e : τ .

Case(VaR). Suppose the derivation is Γ, x : τ ` x : τ , so that e = x. Then from γ ⊨ Γwe know that γ(x) ∈ Pσ .
But from the definition of substitution we have e[γ] = x[γ]

def
= γ(x), which is then in the relation.

Case(App). Suppose the derivation is of the form

...

Γ ` e1 : σ → τ

...

Γ ` e2 : σ

Γ ` e1(e2) : τ
App

By the IH, we have that e1[γ] ∈ Pσ→τ and e2[γ] ∈ Pσ .

By the definition of Pσ→τ we then have that e1[γ](e2[γ]) ∈ Pτ . But (e1(e2))[γ]
def
= e1[γ](e2[γ]), so we are done.

Case(Lam). Suppose the derivation is of the form

...

Γ, x : σ ` u : τ

Γ ` λx : σ. u : σ → τ
Lam

We need to show that (λx : σ. u)[γ]
def
= λx : σ. u[γ] ∈ Pσ→τ .

By definition, this means that assuming e ∈ Pσ we have to show (λx : σ. u[γ])(e) ∈ Pτ .

So assume e ∈ Pσ . By D-Beta we have

(λx : σ. u[γ])(e) 7−→ u[γ][e/x] ≡ u[γ′] (∗)

where

γ′(z) '

{
e if z = x

γ(z) otherwise

Notice that γ′ ⊨ Γ, x : σ, as x is mapped to e ∈ Pσ . Hence by the IH we have u[γ′] ∈ Pτ .

Therefore by Lemma 4 and (∗) we have (λx : σ. u[γ])(e) ∈ Pτ .

Note that the cases of operations on ground types (e.g. plus(−;−)) are somewhat annoying, as they depend on
various admissible rules for e1 7−→∗ e2 which need to be proved by induction.

The method of logical relations is extremely general. It can be adapted to prove a host of properties, including
type safety, noninterference, equivalence of programs, and so on. Moreover, it is extensible to languages with a
higher-order store, polymorphism, and so on.

2


	Outline
	Substitutions
	Some cases of the proof

