
COMSM0067: Advanced Topics in Programming Languages

Store: Dynamics
Alex Kavvos

Reading: PFPL §34.1.2, 34.1.3

Recall that a store is a finite map µ : Loc ⇀ StoreVal, and that we write µ = µ′ ⊗{a 7→ v} to mean that
µ maps the location a ∈ Loc to the value v (i.e. µ(a) ≃ v), and that µ′ is the rest of the store.

The dynamics of stores consist of the following judgements.

e val m ∥ µ final e 7−→ e′ m ∥ µ 7−→Σ m′ ∥ µ′

1 Values and Final States

e val is the same as for PCF expressions (but indexed by Σ) with one additional rule:

Val-Cmd

cmd(m) val

The new judgement m ∥ µ final states that the command m has finished running, leaving the store in
state µ. Only one command is final, viz. the one that returns a value:

Final-Ret
e val

ret(e) ∥ µ final

Tuesday 17th September, 2024



2 Transitions

The expression transitions e 7−→ e′ are much the same as in PCF. Command transitions:

D-Get

get[a] ∥ µ⊗ {a 7→ e} 7−→Σ,a ret(e) ∥ µ⊗ {a 7→ e}

D-Set-1
e 7−→ e′

set[a](e) ∥ µ 7−→Σ,a set[a](e′) ∥ µ

D-Set
e val

set[a](e) ∥ µ⊗ {a 7→ _} 7−→Σ,a ret(e) ∥ µ⊗ {a 7→ e}

D-Ret-1
e 7−→ e′

ret(e) ∥ µ 7−→Σ ret(e′) ∥ µ

D-Bnd-1
e 7−→ e′

bnd(e;x.m) ∥ µ 7−→Σ bnd(e′;x.m) ∥ µ

D-Bnd-Cmd
m1 ∥ µ 7−→Σ m′

1 ∥ µ′

bnd(cmd(m1);x.m2) ∥ µ 7−→Σ bnd(cmd(m′
1);x.m2) ∥ µ′

D-Bnd-Ret
e val

bnd(cmd(ret(e));x.m) ∥ µ 7−→Σ m[e/x] ∥ µ

D-Dcl-1
e 7−→ e′

dcl(e; a.m) ∥ µ 7−→Σ dcl(e′; a.m) ∥ µ

D-Dcl-2
e val m ∥ µ⊗ {a 7→ e} 7−→Σ,a m′ ∥ µ′ ⊗ {a 7→ e′}

dcl(e; a.m) ∥ µ 7−→Σ dcl(e′; a.m′) ∥ µ′

D-Dcl-Ret
e val e′ val

dcl(e; a. ret(e′)) ∥ µ 7−→Σ ret(e′) ∥ µ

The rules D-Dcl-1, D-Dcl-2, and D-Dcl-Ret implicitly define the concept of block structure. As
a result, this language can be implemented using just a stack: there is no heap allocation! (Hence
everything is deterministic.)

3 Type safety

We define
µ : Σ

def
= ∀a ∈ Σ. ∃e. µ(a) ≃ e ∧ e val ∧ ⊢∅ e : Nat

Type safety is given by the following two theorems. Both are shown by simultaneous induction.

Theorem 1 (Preservation).

1. If ⊢Σ e : τ and e 7−→ e′ then ⊢Σ e′ : τ .

2. If ⊢Σ m ok, µ : Σ, and m ∥ µ 7−→Σ m′ ∥ µ′ then ⊢Σ m′ ok and µ′ : Σ.

Theorem 2 (Progress).

1. If ⊢Σ e : τ then either e val or e 7−→ e′ for some e′.

2. If ⊢Σ m ok and µ : Σ then either m ∥ µ final or m ∥ µ 7−→Σ m′ ∥ µ′ for some m′, µ′.

4 First-order, mobility, and CBV

Notice that the dynamics of MA have a strong call-by-value flavour. For example, when executing a
command ret(e) the rule D-Ret-1 forces e to be fully evaluated to a numeral before returning it. Similarly,
when executing dcl(e; a.m) the rules D-Dcl-1 and D-Dcl-2 force e to be fully evaluated before assigning
it to the store location a.

2



Furthermore, the judgement µ : Σ in the type safety proof requires that everything in the store be (a)
numerical, (b) a value, and (c) typable without referring to anything in the store (the subscript Σ is
required to be empty).

It is interesting to contemplate what would happen if these requirements were not in place. Suppose we
allowed commands to return other types. Then, consider the command

m
def
= dcl(zero; a. ret(proc (x : Nat) {set[a](x)}))

Executing this in the empty store ∅ allocates a with zero, and then returns a procedure. The final state
is

ret(proc (x : Nat) {set[a](x)}) ∥ ∅

When this procedure is called, it attempts to store the value of its argument x in a. But this is nonsensical,
as a is no longer allocated! In other words, the location a has escaped the scope of the declaration
dcl(zero; a.−). Not knowing what a is, this procedure will generate a stuck state: the progress theorem
will fail.

Similar issues occur if we allow the store to contain non-strict numbers, i.e. if we admit that succ(e) val
no matter what e is. The reason is that e could contain an occurrence to a location a which may have
been deallocated.

Finally, a similar problem occurs if the dynamics allow CBN-like behaviour in ret(−) or dcl(−;−.−).

How does the type safety proof work then? The key is the property of mobility that natural numbers
satisfy.

Lemma 3 (Mobility). If ⊢Σ e : Nat and e val then ⊢∅ e : Nat.
Mobile data are data that do not refer to locations, and hence can be placed in the store. Mobility does
not hold if we omit Val-Succ.

We have left the dynamics of the PCF part of MA unspecified. The only restriction is that natural
numbers need to be strict, i.e. the rule Val-Succ must be included, so that the mobility lemma holds.
Otherwise, the language is stratified in a mostly-pure part (PCF) and the command language, so that
the first is independent of the second.

3


	Values and Final States
	Transitions
	Type safety
	First-order, mobility, and CBV

