
COMSM0067: Advanced Topics in Programming Languages

StoRe
Alex Kavvos

Reading: PFPL §34.1.1, 34.2

Imperative programs are distinguished from functional programs by the use of a store (US English: memory).
We will present Modernised Algol (MA), an imperative language which extends PCF with a store.

1 Stores

Mathematically, a store can be modelled as a finite partial function

µ : Loc ⇀ StoreVal

from a set Loc of locations to the set StoreVal of storable values. Loc is usually required to be infinite, so that
we can always allocate more memory; for example we may pick Loc def

= N.

The set of storable values determines what can be put in the store. In many languages only first-order data (e.g.
integers, booleans, …) and aggregates thereof (e.g. structs, records, …) are storable. However, languages like
OCaml, Scala and JavaScript have a higher-order store, i.e. functions can be stored in memory. In this unit we
will focus on a first-order store, so we pick StoreVal def

= {v | ` v : Nat ∧ v val}.

Finally, the function µ is finite, i.e. its domain dom(µ) is a finite set; in other words, we are only allowed to use
a finite number of locations at any point in time.

We will write µ = µ′ ⊗ {a 7→ v} to mean that µ maps the location a ∈ Loc to the value v (i.e. µ(a) ' v), and
that µ′ is the rest of the store (i.e. a 6∈ dom(µ′)).

2 Commands

In addition to the terms of the STLC and PCF, MA will have commands. While the purpose of expressions is to
evaluate to a value, the purpose of commands will be tochange the store, before also evaluating to a value.

The syntax chart is that of PCF plus the following extensions.

types τ ::= Nat natural numbers
τ1 ⇀ τ2 (partial) function type
Cmd unevaluated commands

pre-terms e ::= . . .
cmd(m) unevaluated command

pre-commands m ::= ret(e) ret e return value
bnd(e;x.m) bind x← e;m sequence
dcl(e; a.m) decl a := e inm allocate
get[a] @ a fetch location contents
set[a](e) a := e set location contents

The statics of the language have two sorts of judgment:

Γ `Σ e : τ Γ `Σ m ok

Both are parameterised in a finite set Σ ⊆ Loc of locations in use. The first judgement is the usual term typing.
The second confirms thatm is a well-formed command, using values from the context Γ.

Monday 18th September, 2023



The statics of the language are those of PCF (with the additionalΣ inserted everywhere) plus the following rules.

Fetch

Γ `Σ,a get[a] ok

Assign
Γ `Σ,a e : Nat

Γ `Σ,a set[a](e) ok

Ret
Γ `Σ e : Nat

Γ `Σ ret(e) ok

Cmd
Γ `Σ m ok

Γ `Σ cmd(m) : Cmd

Bind
Γ `Σ e : Cmd Γ, x : Nat `Σ m ok

Γ `Σ bnd(e;x.m) ok

Decl
Γ `Σ e : Nat Γ `Σ,a m ok

Γ `Σ dcl(e; a.m) ok

Commands potentially change the store, and then return a value.

The commands get[a] and set[a](e) respectively fetch the value at location a, and assign the value of e : Nat at
location a. Notice that the location needs to be allocated, i.e. included in the subscript.

The command ret(e) simply returns the value of a natural number expression, without changing the store.

The rule Cmd says that any command m can be seen as an expression cmd(m) : Cmd. The command is not
executed when this term is evaluated, but remains frozen in place. Thus, terms of the form cmd(m) are values.

The command bnd(e;x.m) is a sequencing construct. It evaluates e until it becomes a value cmd(p), and then
runs p. The value returned by p is then bound to x, and the next commandm is run.

dcl(e; a.m) declares the new location a by assigning the value of term e to it. Notice that the typing ofm ensures
that a is a valid location (it is included in the subscript). The scope of this declaration is the commandm, which
runs after the allocation. When its execution is complete, the location a gets de-allocated. Thus, this construct
creates block structure, and hence enforces a stack discipline (= a stack suffices to implement it).

3 Examples

To relate Modernised Algol to common programming idioms we may define the following shorthands.

{x← m1;m2}
def
= bnd(cmd(m1);x.m2) {m1;m2}

def
= bnd(cmd(m1); _.m2) do e def

= bnd(e;x. ret(x))

We sometimes write {m1;m2; . . . ;mn}
def
= {m1; {m2; {. . . ;mn}}}, and similarly if we have bindings.

Armed with these shorthands we can write conditionals and loops as follows:

ifm thenm1 elsem2
def
= {x← m; do ifz(x; cmd(m1); _. cmd(m2))}

while (m){m⋆} def
= do fix(r : Cmd. cmd(ifm then (ret zero) else {m⋆; do r}))

A procedure is a term f : τ ⇀ Cmd. We define

proc (x : τ) {m} def
= λx : τ. cmd(m) call e1(e2)

def
= do e1(e2)

We can then write programs like the following one, which computes the factorial of x.

proc (x : nat) {

decl r := 1 in

decl a := x in

{

while (@a) {

y <- @r; z <- @a;

r := y * (x - z + 1); // r := r * (x - a + 1)

a := z - 1; // a := a - 1

};

x <- @ r;

ret x

}

}

The invariant for this loop is @r = (x− @a)!, so at the end @r = x!.

2


	Stores
	Commands
	Examples

