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Imperative programs are distinguished from functional programs by the use of a store (US English: memory).
We will present Modernised Algol (MA), an imperative language which extends PCF with a store.

1 Stores

Mathematically, a store can be modelled as a finite partial function

µ : Loc ⇀ StoreVal

from a set Loc of locations to the set StoreVal of storable values. Loc is usually required to be infinite, so that
we can always allocate more memory; for example we may pick Loc def

= N.

The set of storable values determines what can be put in the store. In many languages only first-order data (e.g.
integers, booleans, …) and aggregates thereof (e.g. structs, records, …) are storable. However, languages like
OCaml, Scala and JavaScript have a higher-order store, i.e. functions can be stored in memory. In this unit we
will focus on a first-order store, so we pick StoreVal def

= {v | ` v : Nat ∧ v val}.

Finally, the function µ is finite, i.e. its domain dom(µ) is a finite set; in other words, we are only allowed to use
a finite number of locations at any point in time.

We will write µ = µ′ ⊗ {a 7→ v} to mean that µ maps the location a ∈ Loc to the value v (i.e. µ(a) ' v), and
that µ′ is the rest of the store (i.e. a 6∈ dom(µ′)).

2 Commands

In addition to the terms of the STLC and PCF, MA will have commands. While the purpose of expressions is to
evaluate to a value, the purpose of commands will be tochange the store, before also evaluating to a value.

The syntax chart is that of PCF plus the following extensions.

types τ ::= Nat natural numbers
τ1 ⇀ τ2 (partial) function type
Cmd unevaluated commands

pre-terms e ::= . . .
cmd(m) unevaluated command

pre-commands m ::= ret(e) ret e return value
bnd(e;x.m) bind x← e;m sequence
dcl(e; a.m) decl a := e inm allocate
get[a] @ a fetch location contents
set[a](e) a := e set location contents

The statics of the language have two sorts of judgment:

Γ `Σ e : τ Γ `Σ m ok

Both are parameterised in a finite set Σ ⊆ Loc of locations in use. The first judgement is the usual term typing.
The second confirms thatm is a well-formed command, using values from the context Γ.
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The statics of the language are those of PCF (with the additionalΣ inserted everywhere) plus the following rules.

Fetch

Γ `Σ,a get[a] ok

Assign
Γ `Σ,a e : Nat

Γ `Σ,a set[a](e) ok

Ret
Γ `Σ e : Nat

Γ `Σ ret(e) ok

Cmd
Γ `Σ m ok

Γ `Σ cmd(m) : Cmd

Bind
Γ `Σ e : Cmd Γ, x : Nat `Σ m ok

Γ `Σ bnd(e;x.m) ok

Decl
Γ `Σ e : Nat Γ `Σ,a m ok

Γ `Σ dcl(e; a.m) ok

Commands potentially change the store, and then return a value.

The commands get[a] and set[a](e) respectively fetch the value at location a, and assign the value of e : Nat at
location a. Notice that the location needs to be allocated, i.e. included in the subscript.

The command ret(e) simply returns the value of a natural number expression, without changing the store.

The rule Cmd says that any command m can be seen as an expression cmd(m) : Cmd. The command is not
executed when this term is evaluated, but remains frozen in place. Thus, terms of the form cmd(m) are values.

The command bnd(e;x.m) is a sequencing construct. It evaluates e until it becomes a value cmd(p), and then
runs p. The value returned by p is then bound to x, and the next commandm is run.

dcl(e; a.m) declares the new location a by assigning the value of term e to it. Notice that the typing ofm ensures
that a is a valid location (it is included in the subscript). The scope of this declaration is the commandm, which
runs after the allocation. When its execution is complete, the location a gets de-allocated. Thus, this construct
creates block structure, and hence enforces a stack discipline (= a stack suffices to implement it).

3 Examples

To relate Modernised Algol to common programming idioms we may define the following shorthands.

{x← m1;m2}
def
= bnd(cmd(m1);x.m2) {m1;m2}

def
= bnd(cmd(m1); _.m2) do e def

= bnd(e;x. ret(x))

We sometimes write {m1;m2; . . . ;mn}
def
= {m1; {m2; {. . . ;mn}}}, and similarly if we have bindings.

Armed with these shorthands we can write conditionals and loops as follows:

ifm thenm1 elsem2
def
= {x← m; do ifz(x; cmd(m1); _. cmd(m2))}

while (m){m⋆} def
= do fix(r : Cmd. cmd(ifm then (ret zero) else {m⋆; do r}))

A procedure is a term f : τ ⇀ Cmd. We define

proc (x : τ) {m} def
= λx : τ. cmd(m) call e1(e2)

def
= do e1(e2)

We can then write programs like the following one, which computes the factorial of x.

proc (x : nat) {

decl r := 1 in

decl a := x in

{

while (@a) {

y <- @r; z <- @a;

r := y * (x - z + 1); // r := r * (x - a + 1)

a := z - 1; // a := a - 1

};

x <- @ r;

ret x

}

}

The invariant for this loop is @r = (x− @a)!, so at the end @r = x!.
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