COMSMO0067: Advanced Topics in Programming Languages

STORE

Alex Kavvos

Reading: PFPL §34.1.1, 34.2

Imperative programs are distinguished from functional programs by the use of a store (US English: memory).
We will present Modernised Algol (MA), an imperative language which extends PCF with a store.

1 Stores
Mathematically, a store can be modelled as a finite partial function
u = Loc — StoreVal

from a set Loc of locations to the set StoreVal of storable values. Loc is usually required to be infinite, so that
we can always allocate more memory; for example we may pick Loc = N.

The set of storable values determines what can be put in the store. In many languages only first-order data (e.g.
integers, booleans, ...) and aggregates thereof (e.g. structs, records, ...) are storable. However, languages like
OCaml, Scala and JavaScript have a higher-order store, i.e. functions can be stored in memory. In this unit we

will focus on a first-order store, so we pick StoreVal = {v | - v : Nat A v val}.

Finally, the function y is finite, i.e. its domain dom(y) is a finite set; in other words, we are only allowed to use
a finite number of locations at any point in time.

We will write p = ¢/ ® {a — v} to mean that ;4 maps the location a € Loc to the value v (i.e. pu(a) ~ v), and
that ' is the rest of the store (i.e. a & dom(u")).

2 Commands

In addition to the terms of the STLC and PCF, MA will have commands. While the purpose of expressions is to
evaluate to a value, the purpose of commands will be to change the store, before also evaluating to a value.

The syntax chart is that of PCF plus the following extensions.

types 7 == Nat natural numbers
T1 — Ty (partial) function type
Cmd unevaluated commands
pre-terms e = ...
cmd(m) unevaluated command

ret(e) ret e return value
bnd(e;x.m) bind z < e;m sequence

dcl(e;a.m) decla:=einm allocate

get[d] @a fetch location contents
set[a](e) a:=e set location contents

pre-commands m

The statics of the language have two sorts of judgment:
I'kse:r 't mok

Both are parameterised in a finite set ¥ C Loc of locations in use. The first judgement is the usual term typing.
The second confirms that m is a well-formed command, using values from the context I'.

Monday 18 September, 2023

The statics of the language are those of PCF (with the additional ¥ inserted everywhere) plus the following rules.

ASSIGN RET Cmp
FercH ' s, e: Nat I'Fs e: Nat I' ks, mok
I' Fs,, geta] ok I by, set[a](e) ok T Fx ret(e) ok I'Fy ecmd(m) : Cmd
Binp DEecL
I'kFse:Cmd I',z : Nat Fx, mok I' s e : Nat I't5 , mok
I' by, bnd(e; z.m) ok T Fx dcl(e; a.m) ok

Commands potentially change the store, and then return a value.

The commands get[a] and set[a](e) respectively fetch the value at location a, and assign the value of e : Nat at
location a. Notice that the location needs to be allocated, i.e. included in the subscript.

The command ret(e) simply returns the value of a natural number expression, without changing the store.

The rule Cmp says that any command m can be seen as an expression cmd(m) : Cmd. The command is not
executed when this term is evaluated, but remains frozen in place. Thus, terms of the form cmd(m) are values.

The command bnd(e; x. m) is a sequencing construct. It evaluates e until it becomes a value cmd(p), and then
runs p. The value returned by p is then bound to z, and the next command m is run.

dcl(e; a. m) declares the new location a by assigning the value of term e to it. Notice that the typing of m ensures
that a is a valid location (it is included in the subscript). The scope of this declaration is the command m, which
runs after the allocation. When its execution is complete, the location « gets de-allocated. Thus, this construct
creates block structure, and hence enforces a stack discipline (= a stack suffices to implement it).

3 Examples
To relate Modernised Algol to common programming idioms we may define the following shorthands.
{z < mi;ma} = bnd(cmd(mq); z.my) {m1;ma} = bnd(cmd(m,); _.mso) doe = bnd(e; . ret(z))

We sometimes write {11 moa; .. .;my, } = {my; {mo; {...;m,}}}, and similarly if we have bindings.
Armed with these shorthands we can write conditionals and loops as follows:
if m thenmy else my = {x < m;doifz(z; cmd(my); _. cmd(ms))}
while (m){m*} = do fix(r : Cmd. cmd(if m then (ret zero) else {m*; dor}))
A procedure is a term f : 7 — Cmd. We define
proc (x : 7) {m} = Az : 7.cmd(m) calleg(es) = doey (es)
We can then write programs like the following one, which computes the factorial of x.

proc (x : nat) {
decl r := 11in
decl a := x in
{
while (@) {
y < @r; z < @a;

re=y+*(x-z+1; //re=rx(x-a+1)
a=2z-1; // a:=a-1

};

X < @ry

ret x

3
3

The invariant for this loop is @r = (x — @a)!, so at the end @r = x!.

	Stores
	Commands
	Examples

