
COMSM0067: Advanced Topics in Programming Languages

Recursion II
Alex Kavvos

Reading: PFPL, §19

1 Programming in PCF

PCF is the first realistic language we have seen in this course: it is a purely functional language with recursion
and natural numbers. To demonstrate its expressivity we show how to write the following functions in it.

data Nat = Zero | Succ Nat

pred ::ۏ Nat <-ۏ Nat
pred Zero = Zero
pred (Succ n) = n

plus ::ۏ Nat <-ۏ Nat <-ۏ Nat
plus n Zero = n
plus n (Succ x) = Succ (plus n x)

times ::ۏ Nat <-ۏ Nat <-ۏ Nat
times = ???

fact ::ۏ Nat <-ۏ Nat
fact Zero = Succ Zero
fact (Succ n) = times (Succ n) (fact n)

In the preceding lecture we saw that pred can be translated as

⊢ pred def
= λn : Nat. ifz(n; zero;x. x) : Nat ⇀ Nat

We can write plus as follows.

⊢ plus def
= fix(f : Nat ⇀ Nat ⇀ Nat. λn : Nat. λm : Nat. ifz(m;n;x. succ(f(n)(x)))) : Nat ⇀ Nat ⇀ Nat

Finally, assuming we have defined a term ⊢ times : Nat ⇀ Nat ⇀ Nat, we can define the factorial function by

⊢ fact def
= fix(f : Nat ⇀ Nat. λn : Nat. ifz(n; succ(zero);x. times(n)(f(x)))) : Nat ⇀ Nat

2 Turing-completeness

The examples given above demonstrate that there exist PCF terms corresponding to many Haskell functions that
can be defined on the type haskellNat using pattern matching and recursion. But how far does this go?

Definition 1. A partial function f : N ⇀ N is PCF-definable iff there exists a PCF term ⊢ e : Nat ⇀ Natwith

f(x) ≃ y ⇐⇒ e(succx(zero)) 7−→∗ succy(zero)

We then have the following theorem.

Tuesday 17th September, 2024



Theorem 2 (Turing-completeness of PCF). A function is PCF-definable if and only if it is partial recursive.

This means that PCF can compute every functionN ⇀ N that is believed to be computable by a digital computer
(or Turing machine, or register machine, or RAM machine, or …) according to the Church-Turing thesis.

3 Sequentiality

The Turing-completeness of PCF implies that it is as powerful a language as we can have at type N ⇀ N.
Nevertheless, in the study of programming languages we care about more than just the computability of partial
functions of natural numbers.

Gordon Plotkin established the following theorem about PCF in 1977.

Theorem 3. There is no PCF term ⊢ por : Nat ⇀ Nat ⇀ Nat that satisfies the following three criteria.

1. If e1 7−→∗ zero then por(e1)(e2) 7−→∗ zero.

2. If e2 7−→∗ zero then por(e1)(e2) 7−→∗ zero.

3. If e1 7−→∗ succ(zero) and e2 7−→∗ succ(zero) then por(e1)(e2) 7−→∗ succ(zero).

Thinking of zero as true and succ(zero) as false (like in Unix!), the term por can be thought of as encoding
a parallel or function. This amounts to evaluating the expression A ∨ B by spawning two threads that will
evaluate A and B concurrently. These two expressions might be very complicated—in fact, they might contain
infinite loops! If one of the two spawned threads returns true, so does the evaluation of A ∨ B. Otherwise, the
computation continues until both A and B evaluate to false.

If we represent an infinite loop by the symbol ⊥, the parallel or function has the following ‘truth table.’

∨ tt ff ⊥
tt tt tt tt
ff tt ff ⊥
⊥ tt ⊥ ⊥

Even though PCF can compute every numerical function that a digital computer can, it cannot compute this very
simple ‘parallel’ function! It is often said that PCF embodies the notion of sequential functional computation.

The classical theory of computability exclusively discusses the computability of partial functions on natural num-
bers through somemodel of computation, e.g. Turingmachines. In those terms all knownmodels of computation
have equivalent expressivity (the Church-Turing thesis). However, classical computability cannot capture this
kind of higher-order expressivity. This is sometimes called the ‘Church-Turing anti-thesis.’

2


	Programming in PCF
	Turing-completeness
	Sequentiality

