COMSMO0067: Advanced Topics in Programming Languages

RECURSION

Alex Kavvos

Reading: PFPL, §19

1 Termination for the simply-typed \-calculus

The simply-typed A-calculus (STLC) has a property that is very unusual for a programming language.
Theorem 1 (Termination). For every I~ e : 7 there exists a v val such that e —* v.
This may be proven using the technique of logical relations; see e.g. here.

In other words, every program written in the STLC terminates with a value. However, we intuitively know that
any realistic programming language allows infinite loops. This theorem says that it is impossible to write a term
with infinite behaviour in the STLC, so there is room to increase its expressivity.

2 Recursion and fixed points
We want to add general recursion to the STLC; this will enable the writing of recursive programs, as in Haskell.
Consider the following recursive definition of the factorial function:
fact(n) = if n = 0 then 1 else n * fact(n — 1)
First we use (informal) A-notation to abstract away the argument:
fact = An. if n = 0 then 1 else n * fact(n — 1)

Then we use A-notation again to abstract away the recursive call:

fact = (Af. An.if n = 0 then 1 else n * f(n — 1))(fact)

F

This is an equation of the form fact = F'(fact), which is to say that fact is a fixed point of the higher-order

def

function given by F'(f) = An. if n = 0 then 1 else n % f(n — 1). The types here are
fact : N =~ N F:N—=N)—- (N=N)

Therefore one way to add recursion to a programming language is to include a construct that computes the fixed
point of any function F' : ¢ — o. If we have fixed points at all types then we have them for N — N as well.

Curiously, this may be achieved within Haskell itself.

fix 2 (@ ->a) -> a
fix f = f (fix f)

h :: (Integer -> Integer) -> (Integer -> Integer)
hfn=if n = 0 then 1 else n » f (n-1)

fact :: Integer -> Integer
fact = fix h

Monday 18 September, 2023


http://www.cs.cmu.edu/~rwh/courses/chtt/pdfs/kripke.pdf

3 PCF

PCF (= Programming Computable Functions) = (some version of) the STLC + fixed points. Syntax chart:

types 7 = Nat natural numbers

I — T (partial) function type
pre-terms e = variables

zero Zero

succ(e) successor

ifz(e; ep; . 1) zero test

Ax:T.e abstraction

e1(es) application

fix(z:7.¢€) fixed point

The statics of PCF are given by the following typing rules.

Succ

VAR ZERO I'te: Nat
Nz:okba:o I' - zero : Nat I'F succ(e) : Nat

Lam Aprp

Ix:oke:r I'tep:o—71 I'key:o

'FXz:iogeio—7 I'ke(er): T

IFZERO Fix

I'Fe: Nat Trheg:T T'x:Natke: 7 Fz:7ke:T

I'Fifz(e;ep;x.eq) = 7 I'Ffix(z:7.€): 7

What has been removed: products, sums (can be added back at will). What has been replaced: numbers and
strings (by natural numbers, with an ”if zero” test). What has been added: fixed points. The dynamics are

7 VaL-Succ D-Succ
VAL-ZERO e val VaL-Lam e ¢
zero val succ(e) val Az :T.eval succ(e) — succ(e’)
D-Arp-1 D-B
e1 — e} “PETA
e1(ea) — € (e) (Az:7.e1)(e2) — eqfea/x]
D-Irz-1
D-Fix e—s ¢
fix(x : 7. e) — e[fix(x : 7.€) /2] ifz(e; eq; x. e1) — ifz(e’;e0; . 1)
DorzZ D-Irz-Succ
“IFZ£ERO succ(e) val
ifz(zero; ep; x. e1) — eg ifz(succ(e); ep; x. e1) — e1]e/x]

For example, the following terms are well-typed.
F pred = An : Nat. ifz(n; zero; . x) : Nat — Nat
F fix(n : Nat.succ(n)) : Nat
We have the following transition sequences.
pred(zero) — ifz(zero; zero; x. x) — zero
pred(succ(zero)) — ifz(succ(zero); zero; x. ) — zero
pred(succ(succ(zero))) — ifz(succ(succ(zero)); zero; x. &) — succ(zero)
(suce(

pred(succ(succ(succ(zero)))) — ifz(succ(succ(succ(zero))); zero; x. ) — succ(succ(zero))



	Termination for the simply-typed -calculus
	Recursion and fixed points
	PCF

