
COMSM0067: Advanced Topics in Programming Languages

RecuRsion
Alex Kavvos

Reading: PFPL, §19

1 Termination for the simply-typed λ-calculus

The simply-typed λ-calculus (STLC) has a property that is very unusual for a programming language.

Theorem 1 (Termination). For every ` e : τ there exists a v val such that e 7−→∗ v.

This may be proven using the technique of logical relations; see e.g. here.

In other words, every program written in the STLC terminates with a value. However, we intuitively know that
any realistic programming language allows infinite loops. This theorem says that it is impossible to write a term
with infinite behaviour in the STLC, so there is room to increase its expressivity.

2 Recursion and fixed points

We want to add general recursion to the STLC; this will enable the writing of recursive programs, as in Haskell.

Consider the following recursive definition of the factorial function:

fact(n) = if n = 0 then 1 else n ∗ fact(n− 1)

First we use (informal) λ-notation to abstract away the argument:

fact = λn. if n = 0 then 1 else n ∗ fact(n− 1)

Then we use λ-notation again to abstract away the recursive call:

fact = (λf. λn. if n = 0 then 1 else n ∗ f(n− 1))︸ ︷︷ ︸
F

(fact)

This is an equation of the form fact = F (fact), which is to say that fact is a fixed point of the higher-order
function given by F (f)

def
= λn. if n = 0 then 1 else n ∗ f(n− 1). The types here are

fact : N ⇀ N F : (N ⇀ N) → (N ⇀ N)

Therefore one way to add recursion to a programming language is to include a construct that computes the fixed
point of any function F : σ → σ. If we have fixed points at all types then we have them for N → N as well.

Curiously, this may be achieved within Haskell itself.

fix :: (a -> a) -> a

fix f = f (fix f)

h :: (Integer -> Integer) -> (Integer -> Integer)

h f n = if n == 0 then 1 else n * f (n-1)

fact :: Integer -> Integer

fact = fix h

Monday 18th September, 2023

http://www.cs.cmu.edu/~rwh/courses/chtt/pdfs/kripke.pdf


3 PCF

PCF (= Programming Computable Functions) = (some version of) the STLC + fixed points. Syntax chart:

types τ ::= Nat natural numbers
τ1 ⇀ τ2 (partial) function type

pre-terms e ::= x variables
zero zero
succ(e) successor
ifz(e; e0;x. e1) zero test
λx : τ. e abstraction
e1(e2) application
fix(x : τ. e) fixed point

The statics of PCF are given by the following typing rules.

VaR

Γ, x : σ ` x : σ

ZeRo

Γ ` zero : Nat

Succ
Γ ` e : Nat

Γ ` succ(e) : Nat

Lam
Γ, x : σ ` e : τ

Γ ` λx : σ. e : σ ⇀ τ

App
Γ ` e1 : σ ⇀ τ Γ ` e2 : σ

Γ ` e1(e2) : τ

IfZeRo
Γ ` e : Nat Γ ` e0 : τ Γ, x : Nat ` e1 : τ

Γ ` ifz(e; e0;x. e1) : τ

Fix
Γ, x : τ ` e : τ

Γ ` fix(x : τ. e) : τ

What has been removed: products, sums (can be added back at will). What has been replaced: numbers and
strings (by natural numbers, with an ”if zero” test). What has been added: fixed points. The dynamics are

Val-ZeRo

zero val

Val-Succ
e val

succ(e) val

Val-Lam

λx : τ. e val

D-Succ
e 7−→ e′

succ(e) 7−→ succ(e′)

D-App-1
e1 7−→ e′1

e1(e2) 7−→ e′1(e2)

D-Beta

(λx : τ. e1)(e2) 7−→ e1[e2/x]

D-Fix

fix(x : τ. e) 7−→ e[fix(x : τ. e)/x]

D-Ifz-1
e 7−→ e′

ifz(e; e0;x. e1) 7−→ ifz(e′; e0;x. e1)

D-Ifz-ZeRo

ifz(zero; e0;x. e1) 7−→ e0

D-Ifz-Succ
succ(e) val

ifz(succ(e); e0;x. e1) 7−→ e1[e/x]

For example, the following terms are well-typed.

` pred def
= λn : Nat. ifz(n; zero;x. x) : Nat ⇀ Nat

` fix(n : Nat. succ(n)) : Nat

We have the following transition sequences.

pred(zero) 7−→ ifz(zero; zero;x. x) 7−→ zero

pred(succ(zero)) 7−→ ifz(succ(zero); zero;x. x) 7−→ zero

pred(succ(succ(zero))) 7−→ ifz(succ(succ(zero)); zero;x. x) 7−→ succ(zero)

pred(succ(succ(succ(zero)))) 7−→ ifz(succ(succ(succ(zero))); zero;x. x) 7−→ succ(succ(zero))

...

2


	Termination for the simply-typed -calculus
	Recursion and fixed points
	PCF

