The simply-typed λ -calculus: functions

Alex Kavvos

Reading: PFPL §8.2

The term $z : \text{Num} \vdash \text{plus}(z; z) : \text{Num}$ expresses the idea of doubling a number. Should we wish to use this term, we must first substitute a number—e.g. num[57]—for the free variable z. Instead, we would like our programming language to be able express doubling as a concept itself. That will be achieved by adding functions.

1 Statics

We extend the syntax chart with the following constructs:

The typing is given by the following two rules.

LAM	App
$\Gamma, x: \sigma \vdash e: \tau$	$\Gamma \vdash e_1 : \sigma \to \tau \qquad \Gamma \vdash e_2 : \sigma$
$\overline{\Gamma \vdash \lambda x : \sigma. e : \sigma \to \tau}$	$\Gamma \vdash e_1(e_2) : \tau$

The first rule creates λ -abstractions: it discharges a free variable $x : \sigma$, thereby creating a function which accepts an argument of type σ and returns a result of type τ . Hence, we may express the concept of doubling by

 $\vdash \lambda z : \mathsf{Num. plus}(z; z) : \mathsf{Num} \to \mathsf{Num}$

which is a term of function type.

The second rule is known as application, and allows the application of a function to a compatible argument.

2 Dynamics

The dynamics of function types are given by the following rules.

Val-Lam	$\begin{array}{c} \text{D-App-1} \\ e_1 \longmapsto e_1' \end{array}$	D-Beta	
$\overline{\lambda x}: \tau. e \text{ val}$	$\overline{e_1(e_2)\longmapsto e_1'(e_2)}$	$\overline{(\lambda x:\tau.e_1)(e_2)\longmapsto e_1[e_2/x]}$	

The definition of substitution is the same as before, but extended with the clauses

$$(\lambda y:\tau. u)[e/x] \stackrel{\text{def}}{=} \lambda y:\tau. u[e/x] \qquad (e_1(e_2))[e/x] \stackrel{\text{def}}{=} (e_1[e/x])(e_2[e/x])$$

Every λ -abstraction is a value: its body is 'frozen' until an argument is provided.

The rule D-BETA encapsulates the meaning of functions. If we have a function λx . e_1 is applied to an argument e_2 , then we must evaluate the **body** e_1 of the function with the **argument** e_2 substituted for the variable x. This accords with our mathematical experience: if $f(x) \stackrel{\text{def}}{=} x^2$ then $f(5) = (x^2)[5/x] = 5^2$. However, we shall now write the definition using λ -notation, viz. as $f \stackrel{\text{def}}{=} \lambda x$. x^2 .

Monday 18th September, 2023

3 Examples

Our typing rule is the most obvious solution to adding functions. However, it is worth noting that we have perhaps obtained more than we asked: our language now has **higher-order functions**.

For example, we have the following typing derivation.

$\overline{x:Num,y:Num\vdash x:Num} \forall \mathtt{AR} \qquad \overline{x:Num,y:Num\vdash y:Num} \forall \mathtt{AR}$	- Plus		
$x:Num,y:Num\vdashplus(x;y):Num$		T	
$x: Num \vdash \lambda y: Num. plus(x; y): Num ightarrow Num$		LAM	
$\vdash \lambda x : Num. \lambda y : Num. plus(x; y) : Num \to (Num \to Num)$		LA	м
add			

This is a function that returns a function. It corresponds to the Haskell definition

add :: Integer -> Integer -> Integer add x y = x + y

which can also be written as

add :: Integer -> Integer -> Integer add = \x -> \y -> x + y

This definition gives rise to the following transition sequence.

$$\begin{array}{l} \operatorname{add}(\operatorname{num}[1])(\operatorname{num}[2])\longmapsto(\lambda y:\operatorname{Num.}\operatorname{plus}(\operatorname{num}[1];y))(\operatorname{num}[2])\\\longmapsto\operatorname{plus}(\operatorname{num}[1];\operatorname{num}[2])\\\longmapsto\operatorname{num}[3]\end{array}$$

The following is also a valid derivation, where $\Gamma \stackrel{\text{\tiny def}}{=} f : \mathsf{Num} \to \mathsf{Num}, x : \mathsf{Num}.$

	$\overline{\Gamma \vdash f: Num o Num}$ Var	$\Gamma \vdash x : Num$ Var		
$\Gamma \vdash f: Num o Num$	$\Gamma \vdash f(x):\mathbf{N}$	Num	— Арр ——— Арр	
f:Nu	$m \to Num, x : Num \vdash f(f(x))$: Num		Lam
f:Num	\rightarrow Num $\vdash \lambda x$: Num. $f(f(x))$:	$Num\toNum$		LAM —— LAM
$\vdash \lambda f: Num \to Nu$	Im. λx : Num. $f(f(x))$: (Num	\rightarrow Num) \rightarrow (Num $-$	\rightarrow Num)	—— LAM
	twice			

This is a function that both takes in and returns a function. It corresponds to the Haskell definition

twice :: $(Num \rightarrow Num) \rightarrow Num \rightarrow Num$ twice f x = f (f x)

This gives rise to the multi-step transition: $twice(add(num[2]))(num[0]) \mapsto^* num[4]$.

It is possible to obtain only first-order functions, but it requires additional effort: see PFPL §8.1.

4 Properties

We have completed a presentation of

the simply-typed λ -calculus (STLC) = product types + sum types + function types (+ constants)

The optional constants referred to above amount to the the basic language of numbers and strings, which consists of some **base types**-e.g. Num and Str-as well as some **primitive functions**, e.g. plus(-; -) and cat(-; -).

The STLC satisfies the usual properties of type safety, namely progress and preservation.