
COMSM0067: Advanced Topics in Programming Languages

The simply-typed λ-calculus: functions
Alex Kavvos

Reading: PFPL §8.2

The term z : Num ` plus(z; z) : Num expresses the idea of doubling a number. Should we wish to use this term,
wemust first substitute a number—e.g. num[57]—for the free variable z. Instead, wewould like our programming
language to be able express doubling as a concept itself. That will be achieved by adding functions.

1 Statics

We extend the syntax chart with the following constructs:

types τ ::= . . .
τ1 → τ2 function type

pre-terms e ::= . . .
λx : τ. e abstraction
e1(e2) application

The typing is given by the following two rules.

Lam
Γ, x : σ ` e : τ

Γ ` λx : σ. e : σ → τ

App
Γ ` e1 : σ → τ Γ ` e2 : σ

Γ ` e1(e2) : τ

Thefirst rule creates λ-abstractions: it discharges a free variable x : σ, thereby creating a function which accepts
an argument of type σ and returns a result of type τ . Hence, we may express the concept of doubling by

` λz : Num. plus(z; z) : Num → Num

which is a term of function type.

The second rule is known as application, and allows the application of a function to a compatible argument.

2 Dynamics

The dynamics of function types are given by the following rules.

Val-Lam

λx : τ. e val

D-App-1
e1 7−→ e′1

e1(e2) 7−→ e′1(e2)

D-Beta

(λx : τ. e1)(e2) 7−→ e1[e2/x]

The definition of substitution is the same as before, but extended with the clauses

(λy : τ. u)[e/x]
def
= λy : τ. u[e/x] (e1(e2))[e/x]

def
= (e1[e/x])(e2[e/x])

Every λ-abstraction is a value: its body is ‘frozen’ until an argument is provided.

The rule D-Beta encapsulates the meaning of functions. If we have a function λx. e1 is applied to an argument
e2, then we must evaluate the body e1 of the function with the argument e2 substituted for the variable x. This
accords with our mathematical experience: if f(x) def

= x2 then f(5) = (x2)[5/x] = 52. However, we shall now
write the definition using λ-notation, viz. as f def

= λx. x2.

Monday 18th September, 2023



3 Examples

Our typing rule is the most obvious solution to adding functions. However, it is worth noting that we have
perhaps obtained more than we asked: our language now has higher-order functions.

For example, we have the following typing derivation.

x : Num, y : Num ` x : Num
VaR

x : Num, y : Num ` y : Num
VaR

x : Num, y : Num ` plus(x; y) : Num
Plus

x : Num ` λy : Num. plus(x; y) : Num → Num
Lam

` λx : Num. λy : Num. plus(x; y)︸ ︷︷ ︸
add

: Num → (Num → Num)
Lam

This is a function that returns a function. It corresponds to the Haskell definition

add :: Integer -> Integer -> Integer

add x y = x + y

which can also be written as

add :: Integer -> Integer -> Integer

add = \x -> \y -> x + y

This definition gives rise to the following transition sequence.

add(num[1])(num[2]) 7−→ (λy : Num. plus(num[1]; y))(num[2])

7−→ plus(num[1]; num[2])

7−→ num[3]

The following is also a valid derivation, where Γ def
= f : Num → Num, x : Num.

Γ ` f : Num → Num

Γ ` f : Num → Num
VaR

Γ ` x : Num
VaR

Γ ` f(x) : Num
App

f : Num → Num, x : Num ` f(f(x)) : Num
App

f : Num → Num ` λx : Num. f(f(x)) : Num → Num
Lam

` λf : Num → Num. λx : Num. f(f(x))︸ ︷︷ ︸
twice

: (Num → Num) → (Num → Num)
Lam

This is a function that both takes in and returns a function. It corresponds to the Haskell definition

twice :: (Num -> Num) -> Num -> Num

twice f x = f (f x)

This gives rise to the multi-step transition: twice(add(num[2]))(num[0]) 7−→∗ num[4].

It is possible to obtain only first-order functions, but it requires additional effort: see PFPL §8.1.

4 Properties

We have completed a presentation of

the simply-typed λ-calculus (STLC) = product types + sum types + function types (+ constants)

The optional constants referred to above amount to the the basic language of numbers and strings, which consists
of some base types—e.g. Num and Str—as well as some primitive functions, e.g. plus(−;−) and cat(−;−).

The STLC satisfies the usual properties of type safety, namely progress and preservation.

2


	Statics
	Dynamics
	Examples
	Properties

