
COMSM0067: Advanced Topics in Programming Languages

The simply-typed λ-calculus: sums and products
Alex Kavvos

Reading: PFPL §10.1, 11.1

The language of numbers and strings we have been studying so far has very limited expressivity. We will now
proceed to radically expand its capabilities. As a result, it will increasingly resemble a realistic functional pro-
gramming language. The full language we will study this week is known as the simply-typed λ-calculus.

First, we will show how to add facilities that can express the following Haskell data types and programs.
("hello", "world") ::ۏ (Str, Str)
data EitherNumStr = Left Num | Right Str

1 Products

Product types allow the programmer to form tuples. Binary products allow us to write functions that return
not one, but two values. The unit type (or nullary product) allows us to write functions that return nothing.1

We extend the syntax chart of Lecture 3 by adding the following new types and pre-terms:

types τ ::= . . .
τ1 × τ2 product type
1 unit type

pre-terms e ::= . . .
⟨e1, e2⟩ pair constructor
π1(e) first projection
π2(e) second projection

The statics of product types are given by adding the following typing rules.

Unit

Γ ⊢ ⟨⟩ : 1

Prod
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2

Proj-1
Γ ⊢ e : τ1 × τ2

Γ ⊢ π1(e) : τ1

Proj-2
Γ ⊢ e : τ1 × τ2

Γ ⊢ π2(e) : τ2

The dynamics of product types are given by adding the following rules.

Val-Unit

⟨⟩ val

Val-Pair

⟨e1, e2⟩ val

D-Proj-Tuple-1

π1(⟨e1, e2⟩) 7−→ e1

D-Proj-Tuple-2

π2(⟨e1, e2⟩) 7−→ e2

D-Proj-1
e 7−→ e′

π1(e) 7−→ π1(e
′)

D-Proj-2
e 7−→ e′

π2(e) 7−→ π2(e
′)

For example, the following typing judgements hold.

⊢ ⟨⟨⟩, ⟨str[‘hello’], str[‘world’]⟩⟩ : 1× (Str× Str)

⊢ π1(⟨⟨⟩, ⟨str[‘hello’], str[‘world’]⟩⟩) : 1
p : (Num× Num)× Num ⊢ ⟨π1(π1(p)), ⟨π2(π1(p)), π2(p)⟩⟩ : Num× (Num× Num)

1In Haskell the binary product of two types haskella and haskellb is written haskell(a, b). The unit type is written haskell(), and has
the unique value haskell().

Tuesday 17th September, 2024



2 Sums

Sum types express choices between values of different types. Binary sums allow us to write programs that
pattern match on a variable. The void type (or empty type, or nullary sum) offers no choice at all.2

We further extend the syntax chart given above by adding the following new types and pre-terms:

types τ ::= . . .
τ1 + τ2 sum type
0 void type

pre-terms e ::= . . .
abort(e) abort
inl(e) left injection
inr(e) right injection
case(e;x. e1; y. e2) case analysis

The statics of sums are given by adding the following rules.

Abort
Γ ⊢ e : 0

Γ ⊢ abort(e) : τ

Inl
Γ ⊢ e : τ1

Γ ⊢ inl(e) : τ1 + τ2

Inr
Γ ⊢ e : τ2

Γ ⊢ inr(e) : τ1 + τ2

Case
Γ ⊢ e : τ1 + τ2 Γ, x : τ1 ⊢ e1 : τ Γ, y : τ2 ⊢ e2 : τ

Γ ⊢ case(e;x. e1; y. e2) : τ

The dynamics of sums are given by adding the following rules.

Val-Inl

inl(e) val

Val-Inr

inr(e) val

D-Abort-1
e 7−→ e′

abort(e) 7−→ abort(e′)

D-Case-Inl

case(inl(e);x. e1; y. e2) 7−→ e1[e/x]

D-Case-Inr

case(inr(e);x. e1; y. e2) 7−→ e2[e/y]

D-Case-1
e 7−→ e′

case(e;x. e1; y. e2) 7−→ case(e′;x. e1; y. e2)

The definition of substitution is the one in Lecture 4, but extended with the following clauses.

⟨e1, e2⟩[e/x]
def
= ⟨e1[e/x], e2[e/x]⟩ πi(u)[e/x]

def
= πi(u[e/x])

inl(u)[e/x] def
= inl(u[e/x]) inr(u)[e/x] def

= inr(u[e/x])

case(u; z. e1; v. e2)[e/x]
def
= case(u[e/x]; z. e1[e/x]; v. e2[e/x])

Notice that z and v are bound in e1 and e2 respectively, so the Barendregt convention applies.

For example, the following typing judgements hold.

⊢ inl(num[4]) : Num+ Str

x : Str+ (Str× Num) ⊢ case(x; y. y; z. π1(z)) : Str

x : Str+ Num ⊢ case(x; y. inr(y); z. inl(z)) : Num+ Str

2In Haskell the binary sum of two types is given by the declaration haskelldata Either a b = Left a | Right b. The void type can be defined
by the declaration haskelldata Empty, but it is less useful.

2


	Products
	Sums

