The simply-typed λ -calculus: sums and products

Alex Kavvos

Reading: PFPL §10.1, 11.1

The language of numbers and strings we have been studying so far has very limited expressivity. We will now proceed to radically expand its capabilities. As a result, it will increasingly resemble a realistic functional programming language. The full language we will study this week is known as the **simply-typed** λ -calculus.

First, we will show how to add facilities that can express the following Haskell data types and programs.

```
("hello", "world") :: (Str, Str)
data EitherNumStr = Left Num | Right Str
```

1 Products

Product types allow the programmer to form tuples. **Binary products** allow us to write functions that return not one, but two values. The **unit type** (or **nullary product**) allows us to write functions that return nothing.¹

We extend the syntax chart of Lecture 3 by adding the following new types and pre-terms:

types	au	::=		
			$\tau_1 \times \tau_2$	product type
			1	unit type
pre-terms	e	::=		
			$\langle e_1, e_2 \rangle$	pair constructor
			$\pi_1(e)$	first projection
			$\pi_2(e)$	second projection

The **statics** of product types are given by adding the following typing rules.

Unit	Prod	Proj-1	Proj-2
	$\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2$	$\Gamma \vdash e : \tau_1 \times \tau_2$	$\Gamma \vdash e : \tau_1 \times \tau_2$
$\overline{\Gamma \vdash \langle \rangle : 1}$	$\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2$	$\Gamma \vdash \pi_1(e) : \tau_1$	$\overline{\Gamma \vdash \pi_2(e) : \tau_2}$

The **dynamics** of product types are given by adding the following rules.

Val-Unit	Val-Pair	D-Proj-Tuple-1	D-Proj-Tuple-2	
$\overline{\langle \rangle \text{ val}}$	$\overline{\langle e_1, e_2 angle}$ val	$\overline{\pi_1(\langle e_1, e_2 \rangle) \longmapsto e_1}$	$\overline{\pi_2(\langle e_1, e_2 \rangle) \longmapsto e_2}$	
D-Proj-1		D-Proj-2		
$e\longmapsto e'$		$e\longmapsto e'$		
$\overline{\pi_1(e)\longmapsto \pi_1(e')}$		$\overline{\pi_2(e)\longmapsto \pi_2(e')}$		

For example, the following typing judgements hold.

$$-\langle \langle \rangle, \langle \mathsf{str}[\mathsf{`hello'}], \mathsf{str}[\mathsf{`world'}] \rangle \rangle : \mathbf{1} \times (\mathsf{Str} \times \mathsf{Str})$$

 $\vdash \langle \langle \rangle, \langle \operatorname{str}[`hello'], \operatorname{str}[`world'] \rangle \rangle : \mathbf{1} \times (\operatorname{Str} (\langle \rangle, \langle \operatorname{str}[`hello'], \operatorname{str}[`world'] \rangle \rangle) : \mathbf{1}$

$$p: (\mathsf{Num} \times \mathsf{Num}) \times \mathsf{Num} \vdash \langle \pi_1(\pi_1(p)), \langle \pi_2(\pi_1(p)), \pi_2(p) \rangle \rangle : \mathsf{Num} \times (\mathsf{Num} \times \mathsf{Num})$$

Tuesday 17th September, 2024

¹In Haskell the binary product of two types haskella and haskellb is written haskell(a, b). The unit type is written haskell(), and has the unique value haskell().

2 Sums

Sum types express choices between values of different types. **Binary sums** allow us to write programs that pattern match on a variable. The **void type** (or **empty type**, or **nullary sum**) offers no choice at all.²

We further extend the syntax chart given above by adding the following new types and pre-terms:

The **statics** of sums are given by adding the following rules.

$$\begin{array}{ccc} \begin{array}{c} \operatorname{Abort} & & \operatorname{Inl} & & \operatorname{Inr} \\ \hline \Gamma \vdash e: \mathbf{0} & & & \Gamma \vdash e: \tau_1 \\ \hline \Gamma \vdash \operatorname{abort}(e): \tau & & & \Gamma \vdash e: \tau_2 \\ \end{array} \\ & & \\ \begin{array}{c} \begin{array}{c} \operatorname{Case} \\ \Gamma \vdash e: \tau_1 + \tau_2 & \Gamma, x: \tau_1 \vdash e_1: \tau & \Gamma, y: \tau_2 \vdash e_2: \tau \\ \hline \Gamma \vdash \operatorname{case}(e; x. e_1; y. e_2): \tau \end{array} \end{array} \end{array}$$

The **dynamics** of sums are given by adding the following rules.

$\frac{\text{Val-Inl}}{\text{inl}(e) \text{ val}}$	$\frac{\text{VAL-INR}}{\text{inr}(e) \text{ val}}$	$\frac{\text{D-Abort-1}}{e \longmapsto e'}$ $\frac{abort(e) \longmapsto abort(e')}{abort(e')}$
D-Case-Inl		D-Case-Inr
$\overline{case(inl(e); x. e_1; y. e_2)}$	$\longmapsto e_1[e/x]$	$case(inr(e); x. e_1; y. e_2) \longmapsto e_2[e/y]$
	D-Case-1	,
	$\frac{e}{case(e; x, e_1; y, e_2)}$	$e \mapsto e'$ $\mapsto case(e'; x, e_1; y, e_2)$

The definition of substitution is the one in Lecture 4, but extended with the following clauses.

$$\begin{split} \langle e_1, e_2 \rangle [e/x] &\stackrel{\text{def}}{=} \langle e_1[e/x], e_2[e/x] \rangle & \pi_i(u)[e/x] \stackrel{\text{def}}{=} \pi_i(u[e/x]) \\ & \text{inl}(u)[e/x] \stackrel{\text{def}}{=} \text{inl}(u[e/x]) & \text{inr}(u)[e/x] \stackrel{\text{def}}{=} \text{inr}(u[e/x]) \\ & \text{case}(u; z. e_1; v. e_2)[e/x] \stackrel{\text{def}}{=} \text{case}(u[e/x]; z. e_1[e/x]; v. e_2[e/x]) \end{split}$$

Notice that z and v are bound in e_1 and e_2 respectively, so the Barendregt convention applies. For example, the following typing judgements hold.

$$\vdash \operatorname{inl}(\operatorname{num}[4]) : \operatorname{Num} + \operatorname{Str}$$

$$x : \operatorname{Str} + (\operatorname{Str} \times \operatorname{Num}) \vdash \operatorname{case}(x; y. y; z. \pi_1(z)) : \operatorname{Str}$$

$$x : \operatorname{Str} + \operatorname{Num} \vdash \operatorname{case}(x; y. \operatorname{inr}(y); z. \operatorname{inl}(z)) : \operatorname{Num} + \operatorname{Str}$$

 $^{^{2}}$ In Haskell the binary sum of two types is given by the declaration haskelldata Either a b = Left a | Right b. The void type can be defined by the declaration haskelldata Empty, but it is less useful.