
COMSM0067: Advanced Topics in Programming Languages

Type Safety
Alex Kavvos

Reading: PFPL, §6.

The statics and the dynamics play well together: we show that well-typed programs do not go wrong.

Theorem 1 (Type safety).

1. (Preservation) If ⊢ e : τ and e 7−→ e′ then ⊢ e′ : τ .

2. (Progress) If ⊢ e : τ then either e val or e 7−→ e′ for some e′.

Therefore closed, well-typed terms behave well under reduction:

1. their type is preserved under evaluation, and

2. if they’re not done evaluating, transitions will continue to take place.

1 Preservation

Preservation is the statement that types are preserved under evaluation. This is a central safety property of type
systems: it shows that a step-by-step computation preserves the kind of value that is being computed.

Theorem 2 (Preservation). If ⊢ e : τ and e 7−→ e′ then ⊢ e′ : τ .

Proof. By induction on the derivation of e 7−→ e′. We show the most difficult case, namely that of D-Let.

Case(D-Let). Suppose that the reduction e 7−→ e′ is of the form

let(e1;x. e2) 7−→ e2[e1/x]
D-Let

We know that ⊢ let(e1;x. e2) : τ . By inversion there must exist σ such that ⊢ e1 : σ and x : σ ⊢ e2 : τ . By
the substitution lemma (Lecture 4) we obtain ⊢ e2[e1/x] : τ , which is what we wanted to prove.

2 Progress

Progress is the statement that if a well-typed program is not done computing (is a value), then there is a step
of computation it may take. It is a central liveness property of type systems: it shows that a computation will
continue to evolve until it produces a useful result (if ever!).

First, we need to characterise the values of each type. The following lemma follows ‘by inspection.’

Lemma 3 (Canonical forms). Suppose e val.

1. If ⊢ e : Num then e = num[n] for some n ∈ N.

2. If ⊢ e : Str then e = str[s] for some s ∈ Σ∗.

Theorem 4 (Progress). If ⊢ e : τ then either e val or e 7−→ e′ for some e′.

Proof. By induction on the derivation of ⊢ e : τ . We only show the case for Plus.

Tuesday 17th September, 2024



Case(Plus). Suppose that the derivation is of the form

...
⊢ e1 : Num

...
⊢ e2 : Num

⊢ plus(e1; e2) : Num
Plus

e1 is a closed, well-typed term with a ‘smaller’ derivation, so the induction hypothesis applies to it. Hence,
either e1 val, or there exists e′1 such that e1 7−→ e′1. We consider each case separately.

• Suppose e1 val. We then apply the induction hypothesis to e2, and obtain the same two cases for e2.

– Suppose e2 val. Then, by the canonical forms lemma (Lemma 3) we have that e1 = num[n1] and
e2 = num[n2] for somen1, n2 ∈ N. Then the reduction rule D-Plus applies to the term plus(e1; e2) =
plus(num[n1]; num[n2]), and we have plus(num[n1]; num[n2]) 7−→ num[n1 + n2].

– Suppose there exists e′2 so that e2 7−→ e′2. Then we can construct a derivation

...
e1 val

...
e2 7−→ e′2

plus(e1; e2) 7−→ plus(e1; e′2)
D-Plus-2

so that plus(e1; e2) in fact steps to plus(e1; e′2) according to the dynamics.

• Suppose there exists e′1 so that e1 7−→ e′1. Then we can construct a derivation

...
e1 7−→ e′1

plus(e1; e2) 7−→ plus(e′1; e2)
D-Plus-1

so that plus(e1; e2) in fact steps to plus(e′1; e2) according to the dynamics.

In each case of this exhaustive analysis, there always exists a term to which plus(e1; e2) steps (if well-typed).

2


	Preservation
	Progress

