Dynamics

Alex Kavvos

Reading: PFPL, §5.1, 5.2

We have studied the statics-i.e. the concrete syntax and type system-for a rudimentary programming language of numbers and strings. It is now time to look into the computational behaviour-or dynamics-of programs.
We will set up a transition system that specifies the states of evolution of a program, beginning from some initial term of interest, and ending with a final value.

1 Values

What is the aim of a program? For now, we will assume that it is to compute a value. This is a rather functional way of looking at programming. In contrast, imperative languages seek to effect some change on the world (write in memory, print a value, etc.). We will study such languages later on.
We define the judgement e val by the following rules.

$$
\begin{array}{cc}
\begin{array}{l}
\text { VAL-NUM } \\
n \in \mathbb{N}
\end{array} & \begin{array}{c}
\text { VAL-STR } \\
\text { num }[n] \text { val }
\end{array} \\
\hline \operatorname{str}[s] \text { val }
\end{array}
$$

In other words, we will only accept numbers and strings as values, i.e. results of a computation. It is evident that

Proposition 1. If e val then either $\vdash e:$ Num or $\vdash e:$ Str.
Thus, every value is a closed term: it is typable in a context with no free variables.

2 Transitions

We will define a relation $e_{1} \longmapsto e_{2}$ between closed terms by the following rules.

$$
\begin{gathered}
\frac{n_{1}+n_{2}=n}{\text { D-Plus }\left(\operatorname{num}\left[n_{1}\right] ; \operatorname{num}\left[n_{2}\right]\right) \longmapsto \operatorname{num}[n]} \\
\text { D-CAT } \\
\frac{s_{1}+s_{2}=s}{\operatorname{cat}\left(\operatorname{str}\left[s_{1}\right] ; \operatorname{str}\left[s_{2}\right]\right) \longmapsto \operatorname{str}[s]} \\
\text { D-LEN } \\
\frac{|s|=n}{\operatorname{len}(\operatorname{str}[s]) \longmapsto \operatorname{num}[n]}
\end{gathered}
$$

D-Plus-1

$$
\frac{e_{1} \longmapsto e_{1}^{\prime}}{\operatorname{plus}\left(e_{1} ; e_{2}\right) \longmapsto \operatorname{plus}\left(e_{1}^{\prime} ; e_{2}\right)}
$$

D-Cat-1
$\frac{e_{1} \longmapsto e_{1}^{\prime}}{\operatorname{cat}\left(e_{1} ; e_{2}\right) \longmapsto \operatorname{cat}\left(e_{1}^{\prime} ; e_{2}\right)}$
D-Len-1
$\frac{e \longmapsto e^{\prime}}{\operatorname{len}(e) \longmapsto \operatorname{len}\left(e^{\prime}\right)}$

D-Plus-2

$$
\frac{e_{1} \text { val } \quad e_{2} \longmapsto e_{2}^{\prime}}{\operatorname{plus}\left(e_{1} ; e_{2}\right) \longmapsto \operatorname{plus}\left(e_{1} ; e_{2}^{\prime}\right)}
$$

D-CAT-2

$$
\frac{e_{1} \text { val } \quad e_{2} \longmapsto e_{2}^{\prime}}{\operatorname{cat}\left(e_{1} ; e_{2}\right) \longmapsto \operatorname{cat}\left(e_{1} ; e_{2}^{\prime}\right)}
$$

D-LET

$$
\overline{\operatorname{let}\left(e_{1} ; x . e_{2}\right) \longmapsto e_{2}\left[e_{1} / x\right]}
$$

Note: the rules for times $\left(e_{1} ; e_{2}\right)$ are similar to those for plus $\left(e_{1} ; e_{2}\right)$, and have been omitted.
Terms can be thought of as states of a transition system. The judgement $e_{1} \longmapsto e_{2}$ can be thought of as the relation that specifies the transitions between states. It is read as " e_{1} takes a step to e_{2}."

Some rules, like D-Plus, perform computation; they are sometimes called instruction transitions.

Other ruiles, like D-Plus-1, enable computation in a subterm; they are sometimes called search transitions. These determine the order of evaluation; e.g. here they force e_{1} to be evaluated before e_{2} in the term plus $\left(e_{1} ; e_{2}\right)$.

Strictly speaking, transitions also require derivations like the one below.

$$
\frac{\overline{\operatorname{len}\left(\operatorname{str}\left[{ }^{\prime} \operatorname{asdf} f^{\prime}\right]\right) \longmapsto \text { num }[4]}}{} \frac{\text { D-Les }}{\text { plus }\left(\operatorname{len}\left(\operatorname{str}\left[{ }^{\text {'asdf'}]}\right) ; \text { num }[1]\right) \longmapsto \operatorname{plus}(\text { num }[4] ; \text { num }[1])\right.} \text { D-Plus-1 }
$$

In practice we write the transition, and underline the term to which an instruction transition is applied:

$$
\begin{equation*}
\operatorname{plus}\left(\underline{\text { len } \left.\left(\operatorname{str}\left[{ }^{[a s d f} ’\right]\right) ; ~ n u m[1]\right)} \longmapsto \operatorname{plus}(\text { num }[4] ; \text { num }[1])\right. \tag{1}
\end{equation*}
$$

3 Multi-step transitions

The transition (1) takes a step from a program to another program. It is clear that this second program is not yet a value: more transitions are needed to reach one.

$$
\begin{equation*}
\text { plus }\left(\underline{\left.\operatorname{len}\left(\operatorname{str}\left[{ }^{\prime} \operatorname{asdf} ’\right]\right) ; \text { num }[1]\right) \longmapsto \underline{\text { plus }(\text { num }[4] ; \text { num }[1])} \longmapsto \text { num }[5] ~}\right. \tag{2}
\end{equation*}
$$

A series of transitions is called a transition sequence.
We encapsulate transition sequences by defining the reflexive transitive closure of the relation \longmapsto :

This relation is reflexive, as witnessed by the rule D-Multi-Refl which postulates that $e \longmapsto^{*} e$ for any e.
It is also transitive. However, this requires proof by induction:
Proposition 2. The rule $\frac{e_{1} \longmapsto \longmapsto^{*} e_{2} \quad e_{2} \longmapsto^{*} e_{3}}{e_{1} \longmapsto \longmapsto^{*} e_{3}}$ is admissible.
It is also true that $e \longmapsto^{*} e^{\prime}$ if and only if there exists a transition sequence that proves this. In other words, there should exist pre-terms e_{0}, \ldots, e_{n} (for $n \geq 0$) with

$$
e=e_{0} \longmapsto \ldots \longmapsto e_{n}=e^{\prime}
$$

(This can be proven by induction, but is laborious and not very interesting.) For example, we have

$$
\text { plus }\left(\operatorname{len}\left(\operatorname{str}\left[{ }^{\prime} \operatorname{asdf} f^{\prime}\right]\right) ; \text { num }[1]\right) \longmapsto{ }^{*} \text { num }[5]
$$

precisely because of the transition sequence (2). However, we do not have

$$
\text { plus }(\operatorname{len}(\operatorname{str}[\text { 'asdf'] }] \text {; num }[1]) \longmapsto \operatorname{num}[5]
$$

as this transition requires two steps of computation, not one.

4 Basic properties

If we are to think of values as final states of a computation, then there better be no transitions out of them.
Proposition 3 (Finality). If e val then there is no e^{\prime} with $e \longmapsto e^{\prime}$.
The proof is by inspection. (Formally: by induction on e val, and then inversion on $e \longmapsto e^{\prime}$.)
Every program computes a unique value. This is because the transition relation is deterministic.
Proposition 4 (Determinism). If $e \longmapsto e_{1}$ and $e \longmapsto e_{2}$ then $e_{1} \equiv e_{2}$ (up to α-equivalence).
Hence, we are morally allowed to define $e \Downarrow v$ ("e evaluates to value v ") by

$$
e \Downarrow v \stackrel{\text { def }}{=} e \longmapsto \longmapsto^{*} v \wedge v \mathrm{val}
$$

By Proposition 4, there is at most one v such that $e \Downarrow v$.

