
COMSM0067: Advanced Topics in Programming Languages

Dynamics
Alex Kavvos

Reading: PFPL, §5.1, 5.2

We have studied the statics—i.e. the concrete syntax and type system—for a rudimentary programming language
of numbers and strings. It is now time to look into the computational behaviour—or dynamics—of programs.

We will set up a transition system that specifies the states of evolution of a program, beginning from some
initial term of interest, and ending with a final value.

1 Values

What is the aim of a program? For now, we will assume that it is to compute a value. This is a rather functional
way of looking at programming. In contrast, imperative languages seek to effect some change on theworld (write
in memory, print a value, etc.). We will study such languages later on.

We define the judgement e val by the following rules.

Val-Num
n ∈ N

num[n] val

Val-Str
s ∈ Σ∗

str[s] val

In other words, we will only accept numbers and strings as values, i.e. results of a computation. It is evident
that

Proposition 1. If e val then either ⊢ e : Num or ⊢ e : Str.

Thus, every value is a closed term: it is typable in a context with no free variables.

2 Transitions

We will define a relation e1 7−→ e2 between closed terms by the following rules.

D-Plus
n1 + n2 = n

plus(num[n1]; num[n2]) 7−→ num[n]

D-Plus-1
e1 7−→ e′1

plus(e1; e2) 7−→ plus(e′1; e2)

D-Plus-2
e1 val e2 7−→ e′2

plus(e1; e2) 7−→ plus(e1; e′2)

D-Cat
s1 ++ s2 = s

cat(str[s1]; str[s2]) 7−→ str[s]

D-Cat-1
e1 7−→ e′1

cat(e1; e2) 7−→ cat(e′1; e2)

D-Cat-2
e1 val e2 7−→ e′2

cat(e1; e2) 7−→ cat(e1; e′2)

D-Len
|s| = n

len(str[s]) 7−→ num[n]

D-Len-1
e 7−→ e′

len(e) 7−→ len(e′)

D-Let

let(e1;x. e2) 7−→ e2[e1/x]

Note: the rules for times(e1; e2) are similar to those for plus(e1; e2), and have been omitted.

Terms can be thought of as states of a transition system. The judgement e1 7−→ e2 can be thought of as the
relation that specifies the transitions between states. It is read as “e1 takes a step to e2.”

Some rules, like D-Plus, perform computation; they are sometimes called instruction transitions.

Tuesday 17th September, 2024

Other ruiles, like D-Plus-1, enable computation in a subterm; they are sometimes called search transitions.
These determine the order of evaluation; e.g. here they force e1 to be evaluated before e2 in the term plus(e1; e2).

Strictly speaking, transitions also require derivations like the one below.

len(str[‘asdf’]) 7−→ num[4]
D-Len

plus(len(str[‘asdf’]); num[1]) 7−→ plus(num[4]; num[1])
D-Plus-1

In practice we write the transition, and underline the term to which an instruction transition is applied:

plus(len(str[‘asdf’]); num[1]) 7−→ plus(num[4]; num[1]) (1)

3 Multi-step transitions

The transition (1) takes a step from a program to another program. It is clear that this second program is not yet
a value: more transitions are needed to reach one.

plus(len(str[‘asdf’]); num[1]) 7−→ plus(num[4]; num[1]) 7−→ num[5] (2)

A series of transitions is called a transition sequence.

We encapsulate transition sequences by defining the reflexive transitive closure of the relation 7−→:

D-Multi-Refl

e 7−→∗ e

D-Multi-Step
e 7−→ e′ e′ 7−→∗ e′′

e 7−→∗ e′′

This relation is reflexive, as witnessed by the rule D-Multi-Refl which postulates that e 7−→∗ e for any e.

It is also transitive. However, this requires proof by induction:

Proposition 2. The rule
e1 7−→∗ e2 e2 7−→∗ e3

e1 7−→∗ e3
is admissible.

It is also true that e 7−→∗ e′ if and only if there exists a transition sequence that proves this. In other words, there
should exist pre-terms e0, . . . , en (for n ≥ 0) with

e = e0 7−→ . . . 7−→ en = e′

(This can be proven by induction, but is laborious and not very interesting.) For example, we have

plus(len(str[‘asdf’]); num[1]) 7−→∗ num[5]

precisely because of the transition sequence (2). However, we do not have

plus(len(str[‘asdf’]); num[1]) 7−→ num[5]

as this transition requires two steps of computation, not one.

4 Basic properties

If we are to think of values as final states of a computation, then there better be no transitions out of them.

Proposition 3 (Finality). If e val then there is no e′ with e 7−→ e′.

The proof is by inspection. (Formally: by induction on e val, and then inversion on e 7−→ e′.)

Every program computes a unique value. This is because the transition relation is deterministic.

Proposition 4 (Determinism). If e 7−→ e1 and e 7−→ e2 then e1 ≡ e2 (up to α-equivalence).

Hence, we are morally allowed to define e ⇓ v (“e evaluates to value v”) by

e ⇓ v
def
= e 7−→∗ v ∧ v val

By Proposition 4, there is at most one v such that e ⇓ v.

2

	Values
	Transitions
	Multi-step transitions
	Basic properties

