COMSM0067: Advanced Topics in Programming Languages

DYNAMICS

Alex Kavvos

Reading: PFPL, §5.1, 5.2

We have studied the statics—i.e. the concrete syntax and type system—for a rudimentary programming language of numbers and strings. It is now time to look into the computational behaviour—or **dynamics**—of programs.

We will set up a **transition system** that specifies the states of evolution of a program, beginning from some initial term of interest, and ending with a final **value**.

1 Values

What is the aim of a program? For now, we will assume that it is to **compute a value**. This is a rather functional way of looking at programming. In contrast, imperative languages seek to effect some change on the world (write in memory, print a value, etc.). We will study such languages later on.

We define the judgement e val by the following rules.

Val-Num	Val-Str
$n \in \mathbb{N}$	$s \in \Sigma^*$
num[n] val	str[s] val

In other words, we will only accept numbers and strings as values, i.e. results of a computation. It is evident that

Proposition 1. If *e* val then either $\vdash e$: Num or $\vdash e$: Str.

Thus, every value is a **closed** term: it is typable in a context with no free variables.

2 Transitions

We will define a relation $e_1 \mapsto e_2$ between closed terms by the following rules.

D-Plus	D-Plus-1	D-Plus-2
$n_1 + n_2 = n$	$e_1 \longmapsto e'_1$	$e_1 ext{ val } e_2 \longmapsto e_2'$
$\overline{plus(num[n_1];num[n_2])}\longmapstonum[n]$	$plus(e_1; e_2) \longmapsto plus(e'_1; e_2)$	$\overline{plus(e_1;e_2)} \longmapsto plus(e_1;e_2) \longrightarrow plus(e_1;e_2)$
D-Cat	D-Cat-1	D-Cat-2
$s_1 + s_2 = s$	$e_1 \longmapsto e'_1$	$e_1 \operatorname{val} e_2 \longmapsto e'_2$
$\operatorname{cat}(\operatorname{str}[s_1];\operatorname{str}[s_2])\longmapsto\operatorname{str}[s]$	$\overline{cat(e_1;e_2)\longmapstocat(e_1';e_2)}$	$\overline{cat(e_1;e_2)\longmapstocat(e_1;e_2')}$
D-Len	D-Len-1	D-Let
s = n	$e \mapsto e$	
$len(str[s]) \longmapsto num[n]$	$len(e) \longmapsto len(e')$	$let(e_1; x. e_2) \longmapsto e_2[e_1/x]$

Note: the rules for times $(e_1; e_2)$ are similar to those for $plus(e_1; e_2)$, and have been omitted.

Terms can be thought of as **states** of a transition system. The judgement $e_1 \mapsto e_2$ can be thought of as the relation that specifies the transitions between states. It is read as " e_1 takes a step to e_2 ."

Some rules, like D-PLUS, perform computation; they are sometimes called instruction transitions.

Other rules, like D-PLUS-1, enable computation in a subterm; they are sometimes called **search transitions**. These determine the **order of evaluation**; e.g. here they force e_1 to be evaluated before e_2 in the term $plus(e_1; e_2)$.

Strictly speaking, transitions also require derivations like the one below.

$$\frac{1}{\mathsf{len}(\mathsf{str}[`\mathsf{asdf}'])\longmapsto\mathsf{num}[4]} \xrightarrow{\mathsf{D-Len}} \mathsf{D-Plus-1}}{\mathsf{plus}(\mathsf{len}(\mathsf{str}[`\mathsf{asdf}']);\mathsf{num}[1])\longmapsto\mathsf{plus}(\mathsf{num}[4];\mathsf{num}[1])} \xrightarrow{\mathsf{D-Plus-1}} \mathsf{D-Plus-1}}$$

In practice we write the transition, and underline the term to which an instruction transition is applied:

$$plus(len(str[`asdf']); num[1]) \longmapsto plus(num[4]; num[1])$$
(1)

3 Multi-step transitions

The transition (1) takes a step from a program to another program. It is clear that this second program is not yet a value: more transitions are needed to reach one.

$$plus(len(str[`asdf']); num[1]) \longmapsto plus(num[4]; num[1]) \longmapsto num[5]$$
(2)

D 1/

A series of transitions is called a **transition sequence**.

We encapsulate transition sequences by defining the **reflexive transitive closure** of the relation \mapsto :

$$\frac{\text{D-Multi-Step}}{e \longmapsto^* e} \qquad \qquad \frac{e' \longmapsto^* e''}{e \longmapsto^* e''}$$

This relation is **reflexive**, as witnessed by the rule D-Multi-Refl which postulates that $e \mapsto^* e$ for any e.

It is also **transitive**. However, this requires proof by induction:

Proposition 2. The rule $\frac{e_1 \mapsto^* e_2}{e_1 \mapsto^* e_3}$ is admissible.

It is also true that $e \mapsto^* e'$ if and only if there exists a transition sequence that proves this. In other words, there should exist pre-terms e_0, \ldots, e_n (for $n \ge 0$) with

 $e = e_0 \longmapsto \ldots \longmapsto e_n = e'$

(This can be proven by induction, but is laborious and not very interesting.) For example, we have

```
plus(len(str['asdf']); num[1]) \mapsto num[5]
```

precisely because of the transition sequence (2). However, we **do not** have

 $plus(len(str[`asdf']); num[1]) \mapsto num[5]$

as this transition requires two steps of computation, not one.

4 Basic properties

If we are to think of values as final states of a computation, then there better be no transitions out of them.

Proposition 3 (Finality). If *e* val then there is no *e'* with $e \mapsto e'$.

The proof is by inspection. (Formally: by induction on e val, and then inversion on $e \mapsto e'$.)

Every program computes a unique value. This is because the transition relation is **deterministic**.

Proposition 4 (Determinism). If $e \mapsto e_1$ and $e \mapsto e_2$ then $e_1 \equiv e_2$ (up to α -equivalence).

Hence, we are morally allowed to define $e \Downarrow v$ ("e evaluates to value v") by

 $e \Downarrow v \stackrel{\text{\tiny def}}{=} e \mapsto^* v \land v \text{ val}$

By Proposition 4, there is at most one v such that $e \Downarrow v$.