COMSMO0067: Advanced Topics in Programming Languages

DyNAMICS

Alex Kavvos

Reading: PFPL, §5.1, 5.2

We have studied the statics—i.e. the concrete syntax and type system—for a rudimentary programming language
of numbers and strings. It is now time to look into the computational behaviour—or dynamics—of programs.

We will set up a transition system that specifies the states of evolution of a program, beginning from some
initial term of interest, and ending with a final value.

1 Values

What is the aim of a program? For now, we will assume that it is to compute a value. This is a rather functional
way of looking at programming. In contrast, imperative languages seek to effect some change on the world (write
in memory, print a value, etc.). We will study such languages later on.

We define the judgement e val by the following rules.

VaL-Num VAL-STR
neN sex”
num(n] val str[s] val

In other words, we will only accept numbers and strings as values, i.e. results of a computation. It is evident
that

Proposition 1. If e val then either - e : Num or - e : Str.

Thus, every value is a closed term: it is typable in a context with no free variables.

2 Transitions

We will define a relation e; — e between closed terms by the following rules.

D-Prus D-Prus-1 D-Prus-2
ni+ny=n e — €} e val eg — €h
plus(num(ni]; num[ns]) — numin| plus(e1;ea) — plus(e]; es) plus(e1;ea) — plus(eq;e))
D-Car D-Cart-1 D-Car-2
S1H S92 =35 e1 — e} e val eo —> €
cat(str[sy]; str[sa]) — str[s] cat(eg; e3) — cat(ef; e2) cat(ey; ea) — cat(eq; eh)
D-Len D-LEN-1
|S| —_n e —> (i/ D-LeT
len(str[s]) — numn] len(e) — len(e’) let(eq; . e2) — ealer /]

Note: the rules for times(e;; e2) are similar to those for plus(es; e2), and have been omitted.

Terms can be thought of as states of a transition system. The judgement ¢; — es can be thought of as the
relation that specifies the transitions between states. It is read as “e; takes a step to e5”

Some rules, like D-Prus, perform computation; they are sometimes called instruction transitions.

Tuesday 17" September, 2024

Other ruiles, like D-Prus-1, enable computation in a subterm; they are sometimes called search transitions.
These determine the order of evaluation; e.g. here they force ¢; to be evaluated before e, in the term plus(eq; es).

Strictly speaking, transitions also require derivations like the one below.

D-LEN

len(str[‘asdf’]) — numl[4]

D-Prus-1
plus(len(str[‘asdf’]); num[1]) — plus(num[4]; num|[1 o

In practice we write the transition, and underline the term to which an instruction transition is applied:

plus(len(str[‘asdf’]); num[1]) — plus(num[4]; num[1]) (1)

3 Multi-step transitions

The transition (1) takes a step from a program to another program. It is clear that this second program is not yet
a value: more transitions are needed to reach one.

plus(len(str[‘asdf’]); num[1]) — plus(num[4]; num[1]) — num([5] 2

A series of transitions is called a transition sequence.

We encapsulate transition sequences by defining the reflexive transitive closure of the relation —:

D-MUuULTI-STEP

D-MuLTI-REFL e e e * ol

e—*e er—* e
This relation is reflexive, as witnessed by the rule D-Murti-RerL which postulates that e —* e for any e.
It is also transitive. However, this requires proof by induction:

.. e1—" ez exr—" e Lo
Proposition 2. The rule . is admissible.
€1+ €3

It is also true that e——* ¢’ if and only if there exists a transition sequence that proves this. In other words, there
should exist pre-terms e, . . . , ¢, (for n > 0) with

e=eygr— ... —re, =¢
(This can be proven by induction, but is laborious and not very interesting.) For example, we have
plus(len(str[‘asdf’]); num[1]) —* numl5]
precisely because of the transition sequence (2). However, we do not have
plus(len(str[‘asdf’]); num[1]) — num[5]

as this transition requires two steps of computation, not one.

4 Basic properties

If we are to think of values as final states of a computation, then there better be no transitions out of them.
Proposition 3 (Finality). If e val then there is no ¢’ with e — €.
The proof is by inspection. (Formally: by induction on e val, and then inversion on ¢ — ¢’.)
Every program computes a unique value. This is because the transition relation is deterministic.
Proposition 4 (Determinism). If e — e; and e — €5 then e; = ey (up to a-equivalence).
Hence, we are morally allowed to define e || v (“e evaluates to value v”) by

edlv £ e—*v A vval

By Proposition 4, there is at most one v such that e |} v.

	Values
	Transitions
	Multi-step transitions
	Basic properties

