Inversion ひூ Structural Rules

Alex Kavvos

Reading: PFPL, §4.3

1 Inversion

The nature of the typing rules for the language is such that the shape of a term places strong restrictions on its type. For example, we cannot imagine that the type of a term of the form plus $\left(e_{1} ; e_{2}\right)$ is Str. After all, the only rule that allows us to derive a typing judgement of the form $\Gamma \vdash \operatorname{plus}\left(e_{1} ; e_{2}\right): \tau$ forces $\tau \stackrel{\text { def }}{=}$ Num.
Such facts about type systems are often called inversion lemmata. They are formally stated as follows.
Lemma 1 (Inversion). Suppose $\Gamma \vdash e: \tau$.

1. If $e=\operatorname{plus}\left(e_{1} ; e_{2}\right)$ then it must be that

- $\tau=\mathrm{Num}$
- $\Gamma \vdash e_{1}$: Num
- $\Gamma \vdash e_{2}:$ Num

2. ...

The lemma has a case for each construct of the language; you fill in the rest.
In practice, the proof of the inversion lemma is by inspection ('look at the rules, there can't be another way!'). More formally, the lemma can be shown by induction on the typing derivation.

2 Weakening

Suppose that $x: \sigma \vdash e: \tau$, i.e. that e computes a value of type τ if x is of type σ. It is reasonable to expect that for any fresh variable y (i.e. a variable that doesn't already occur in the term e), the typing judgement $x: \sigma, y: \rho \vdash e: \tau$ should hold as well, no matter what the type ρ is. In other words: assuming random free variables that we do not use at all should not influence the type of a program. This property is called weakening, and it holds in the majority of programming languages.

The reason it holds is that we may systematically thread a fresh variable across a derivation. For example,

$$
\frac{\frac{x: \operatorname{Num} \vdash x: \operatorname{Num} \quad x: \operatorname{Num} \vdash \operatorname{num}[1]: \operatorname{Num}}{x: \operatorname{Num} \vdash \operatorname{plus}(x ; \operatorname{num}[1]): \operatorname{Num}} \quad x: \operatorname{Num} \vdash \operatorname{let}(\operatorname{plus}(x ; \operatorname{num}[1]) ; y . y): \operatorname{Num}}{x: y: \operatorname{Num} \vdash y: \operatorname{Num}}
$$

can be systematically transformed by adding the binding z : Str everywhere to obtain the derivation

$$
\frac{\frac{x: \operatorname{Num}, z: \operatorname{Str} \vdash x: \operatorname{Num} \quad x: \operatorname{Num}, z: \operatorname{Str} \vdash \operatorname{num}[1]: \operatorname{Num}}{x: \operatorname{Num}, z: \operatorname{Str} \vdash \operatorname{plus}(x ; \operatorname{num}[1]): \operatorname{Num}} \frac{x: \operatorname{Num}, z: \operatorname{Str}, y: \operatorname{Num} \vdash y: \operatorname{Num}}{x: \operatorname{Num}, z: \operatorname{Str} \vdash \operatorname{let}(\operatorname{plus}(x ; \operatorname{num}[1]) ; y \cdot y): \operatorname{Num}}}{\frac{x}{x}}
$$

Formally, we state and prove by induction on the typing derivation that
Lemma 2 (Weakening). If $\Gamma \vdash e: \tau$ and x is fresh then $\Gamma, x: \sigma \vdash e: \tau$.

3 Substitution

We have read a judgement $x: \sigma \vdash e: \tau$ as saying that $e: \tau$ if we assume that x stands for a program of type σ. A term $\vdash e: \sigma$ whose context is empty is called a closed term; that means the program e has no free variables.

If we are given a closed term $\vdash e: \sigma$, and a term $x: \sigma \vdash u: \tau$, then we should somehow be able to 'plugin', or substitute, the term $e: \sigma$ for the free variable $x: \sigma$ in u. This is the same process that we know from mathematics as e.g. plugging in $x \stackrel{\text { def }}{=} 5$ in the expression $x^{2}+3 x+1$ to obtain $5^{2}+3 * 5+1$.
We write the resulting term as $u[e / x]$. This is not a construct of the programming language. Rather, it is some notation we use to signify the substitution of one expression in another (as above). We sometimes call such things metatheoretic operations. ${ }^{1}$ Formally, substitution is defined by induction on pre-terms.

$$
\begin{aligned}
z[e / x] \stackrel{\text { def }}{=} \begin{cases}e & \text { if } z \equiv x \\
z & \text { if } z \not \equiv x\end{cases} & \operatorname{let}\left(e_{1} ; y \cdot e_{2}\right)[e / x] \stackrel{\text { def }}{=} \operatorname{let}\left(e_{1}[e / x] ; y \cdot e_{2}[e / x]\right) \\
(\operatorname{num}[n])[e / x] \stackrel{\text { def }}{=} \text { num }[n] & \operatorname{plus}\left(e_{1} ; e_{2}\right)[e / x] \stackrel{\text { def }}{=} \operatorname{plus}\left(e_{1}[e / x] ; e_{2}[e / x]\right) \\
(\operatorname{str}[s])[e / x] \stackrel{\text { def }}{=} \operatorname{str}[s] & \operatorname{cat}\left(e_{1} ; e_{2}\right)[e / x] \stackrel{\text { def }}{=} \operatorname{cat}\left(e_{1}[e / x] ; e_{2}[e / x]\right)
\end{aligned}
$$

The missing cases for times $\left(e_{1} ; e_{2}\right)$ and len $\left(e_{1}\right)$ are analogous.
The fact the term let $\left(e_{1} ; y . e_{2}\right)$ binds y in e_{2} is treacherous! Consider what should happen in the following cases.

$$
\operatorname{let}(x+\operatorname{num}[1] ; y \cdot x+y)[y / x] \quad \operatorname{let}(y ; y \cdot \operatorname{len}(y))\left[\operatorname{str}\left[{ }^{\prime} \operatorname{hi}^{\prime}\right] / y\right]
$$

In the first case, we risk variable capture; we must first α-rename the term to let $(x+\operatorname{num}[1] ; z \cdot x+z)$. In the second case, we risk referential clash; we must first α-rename the term to let $(y ; z$. len $(z))$.

Bound variables are always a source of trouble. It is common to adopt the Barendregt convention: ${ }^{2}$ when substituting we assume that everything has been silently α-renamed in a way that is advantageous for us, and that will not cause the two problems exemplified above. Thus, when writing $u[e / x]$ we will assume that the variable x does not occur bound anywhere in the term u, because we can α-rename it if it does.
Substitution interacts very well with typing. The following is perhaps the most important result in this unit.
Lemma 3 (Substitution). If $\Gamma \vdash e: \tau$ and $\Gamma, x: \tau \vdash u: \sigma$, then $\Gamma \vdash u[e / x]: \sigma$.
Proof. By induction on the derivation of $\Gamma, x: \tau \vdash u: \sigma$. We show only the most involved case, viz. that of Let. If the derivation of $\Gamma, x: \tau \vdash u: \sigma$ ends with Let, then we know that, for some type σ_{1} it has the form

$$
\frac{\frac{\vdots}{\Gamma, x: \tau \vdash e_{1}: \sigma_{1}} \quad \frac{\vdots}{\Gamma, x: \tau, y: \sigma_{1} \vdash e_{2}: \sigma_{2}}}{\underbrace{\Gamma, x: \tau}_{" \Gamma "} \vdash \underbrace{\operatorname{let}\left(e_{1} ; y \cdot e_{2}\right)}_{" u "}: \underbrace{\sigma_{2}}_{" \sigma "}} \text { LET }
$$

By the induction hypothesis ($\mathbf{(H)}$ applied to the assumption $\Gamma \vdash e: \tau$ and the derivation of $\Gamma, x: \tau \vdash e_{1}: \sigma_{1}$ we obtain a derivation of $\Gamma \vdash e_{1}[e / x]: \sigma_{1}$. By the assumption $\Gamma \vdash e: \tau$ and weakening we get $\Gamma, y: \sigma_{1} \vdash e: \tau$. We can then apply the IH to that and the second subtree to obtain a derivation of $\Gamma, y: \sigma_{1} \vdash e_{2}[e / x]: \sigma_{2}$.

Using a single instance of the Let rule we can put these two together to obtain a derivation

$$
\frac{\vdots}{\frac{\Gamma \vdash e_{1}[e / x]: \sigma_{1}}{\Gamma \vdash \operatorname{let}\left(e_{1}[e / x] ; y \cdot e_{2}[e / x]\right): \sigma_{2}}} \frac{\vdots}{\Gamma, y: \sigma_{1} \vdash e_{2}[e / x]: \sigma_{2}} \text { LET }
$$

$\operatorname{But}\left(\operatorname{let}\left(e_{1} ; y \cdot e_{2}\right)\right)[e / x]$ is by definition of substitution exactly the term let $\left(e_{1}[e / x] ; y \cdot e_{2}[e / x]\right)$ in this derivation, so we have shown the result!

[^0]
[^0]: ${ }^{1}$ This term has its origins in logic. We are studying a little programming language which we call our theory. Anything we prove about it this programming language using maths and our minds is a metatheoretic statement, i.e. a statement about the theory itself.
 ${ }^{2}$ Originally coined by Dutch logician Henk Barendregt (b. 1947). Called the identification convention in PFPL.

