COMSM0067: Advanced Topics in Programming Languages

STATICS

Alex Kavvos

Reading: PFPL, §4.1, 4.2

1 The phase distinction

The lifetime of a computer program is divided into two phases:

- the static phase which comprises everything that occurs before running a program; and
- the dynamic phase which comprises everything that happens when a program is actually run.

Thus, the **statics** of a program include things such as lexing, parsing, type-checking, static analysis, etc. In contrast, the **dynamics** of a program include its runtime behaviour: final value, side-effects, exceptions, etc.

In this unit both the statics and the dynamics of a PL will be specified in a fairly idealised, mathematical manner. We will use **abstract syntax** as the syntax of our program; this will absolve us from having to deal with lexing, parsing, grammars, and so on. Our only statics will be a **type system** for this abstract syntax.

Correspondingly, our dynamics will be given by specifying the **operational semantics** of our programs. These will also be presented in a mathematical style, by specifying a little **abstract machine** that evaluates a program.

2 Typing judgements

In this unit we will concern ourselves with typing judgments of the following form:

$$\underbrace{\Gamma}_{\text{context}} \vdash \underbrace{e}_{\text{term}} : \underbrace{\sigma}_{\text{type}}$$

A typing judgement is a ternary relation between three elements:

- the context—an unordered list Γ of variable-type bindings
- the **term**—the program *e* that is being typed
- the type of the term–which classifies what the program computes

We read $\Gamma \vdash e : \sigma$ as "the program *e* has type σ in context Γ ."

The context Γ consists of (variable, type) pairs. E.g. the context $\Gamma = x : \sigma, y : \tau$ declares two free variables:

- x, which stands for a term of type σ
- y, which stands for a term of type τ

These are in no particular order: the context $x : \sigma, y : \tau$ is the same as the context $y : \tau, x : \sigma$.

Thus, we can read the judgement $x : \tau \vdash e : \sigma$ as follows: "assuming that the free variable x stands for a program that computes a value of type τ , the program e computes a value of type σ ."

We will only say that "e is a **term**" if there exist Γ and σ such that the judgement $\Gamma \vdash e : \sigma$ is evident. However, we will identify a larger class of programs, which we will call **pre-terms**. These will have the same 'shape' as terms, but they will not necessary be well-typed. In short, the well-typed pre-terms will be called terms.

Finally, in this unit we will only consider so-called **simple types**, which will come from an inductively generated syntax (see next section).

3 A little language of numbers and strings

To illustrate the aforementioned concepts we will present the statics of a language of numbers and strings. The abstract syntax, types, and pre-terms of the language are presented by the following **syntax chart**.

types	au	::=	= Num		numbers
			Str		strings
pre-terms	e	::=	x		variables
			num[n]		numeral
			$\operatorname{str}[s]$		string literals
			$plus(e_1; e_2)$	$e_1 + e_2$	addition
			$times(e_1; e_2)$	$e_1 * e_2$	multiplication
			$cat(e_1;e_2)$	$e_1 + + e_2$	concatenation
			len(e)	e	length
			$let(e_1; x. e_2)$	$\operatorname{let} x \Leftarrow e_1 \operatorname{in} e_2$	let-definition

This notation is sometimes called an extended Backus-Naur form. It generates syntax trees.

The first symbol represents the syntactic category (e.g. type τ , expression e, etc.).

The second column (immediately to the right of ::=) is the **abstract syntax**: it corresponds closely to the way you would represent the expression in a high-level functional programming language as an abstract syntax tree. Subscripted occurrences (e.g. e_1 , e_2) are recursive occurrences of the same syntactic element. For example, $cat(e_1; e_2)$ is an expression, provided e_1 and e_2 are also expressions. We tacitly assume $n \in \mathbb{N}$ and $s \in \Sigma^*$ for some alphabet Σ . We also tacitly assume that variables x come from some predetermined, infinite supply.

The third column is the concrete syntax: it is a user-friendly abbreviation for the abstract syntax.

In this language a type τ is either a Num or a Str. A pre-term e is given by one of the many forms listed above. The following rules generate the typing judgements, and hence the well-typed **terms** of the language.

$$\begin{array}{cccc} & \operatorname{Var} & & \operatorname{Num} & & \operatorname{Str} \\ & & & & & \\ \hline \Gamma, x: \sigma \vdash x: \sigma & & & \\ \hline \Gamma \vdash \operatorname{num}[n]: \operatorname{Num} & & & \\ \hline \Gamma \vdash \operatorname{num}[n]: \operatorname{Num} & & & \\ \hline & & \\ \hline \Gamma \vdash \operatorname{str}[s]: \operatorname{Str} & \\ \hline \Gamma \vdash \operatorname{plus}(e_1; e_2): \operatorname{Num} & & \\ \hline & & \\ \hline \Gamma \vdash \operatorname{rimes}(e_1; e_2): \operatorname{Num} & \\ \hline & \\ \hline \Gamma \vdash \operatorname{cat}(e_1; e_2): \operatorname{Str} & & \\ \hline \Gamma \vdash \operatorname{len}(e): \operatorname{Num} & & \\ \hline & \\ \hline \Gamma \vdash \operatorname{len}(e): \operatorname{Num} & \\ \hline & \\ \hline & \\ \hline \Gamma \vdash \operatorname{let}(e_1; x. e_2): \sigma_2 & \\ \hline \end{array} \right)$$

Some points about variables and binding:

- Writing $\Gamma, x : \sigma$ insinuates that x does not occur elsewhere in Γ .
- x is bound within e_2 in let $(e_1; x, e_2)$. Thus, it is subject to α -conversion.

An example derivation; for any $s \in \Sigma^*$:

	$\overline{s\in\Sigma^*}$	$\overline{x:Str,y:Str\vdash y:Str}$	$\overline{1 \in \mathbb{N}}$				
$\overline{x:Str\vdash x:Str}$	$\overline{x:Str\vdashstr[s]:Str}$	$x: Str, y: Str \vdash len(y): Num$	$\overline{x:Str,y:Str\vdashnum[1]:Num}$				
$x: Str \vdash ca$	$\operatorname{tt}(x;\operatorname{str}[s]):\operatorname{Str}$	$x: Str, y: Str \vdash plus(len(y); num[1]): Num$					
$x: Str \vdash let(cat(x;str[s]); y. plus(len(y); num[1])): Num$							

In words: if we plug in a program that computes a string for x: Str, this program will append the string $s \in \Sigma^*$ to it; it will then compute its length, and add 1 to it.