
COMSM0067: Advanced Topics in Programming Languages

Statics
Alex Kavvos

Reading: PFPL, §4.1, 4.2

1 The phase distinction

The lifetime of a computer program is divided into two phases:

• the static phase — which comprises everything that occurs before running a program; and

• the dynamic phase — which comprises everything that happens when a program is actually run.

Thus, the statics of a program include things such as lexing, parsing, type-checking, static analysis, etc. In
contrast, the dynamics of a program include its runtime behaviour: final value, side-effects, exceptions, etc.

In this unit both the statics and the dynamics of a PL will be specified in a fairly idealised, mathematical manner.
We will use abstract syntax as the syntax of our program; this will absolve us from having to deal with lexing,
parsing, grammars, and so on. Our only statics will be a type system for this abstract syntax.

Correspondingly, our dynamics will be given by specifying the operational semantics of our programs. These
will also be presented in a mathematical style, by specifying a little abstract machine that evaluates a program.

2 Typing judgements

In this unit we will concern ourselves with typing judgments of the following form:

Γ︸︷︷︸
context

⊢ e︸︷︷︸
term

: σ︸︷︷︸
type

A typing judgement is a ternary relation between three elements:

• the context—an unordered list Γ of variable-type bindings

• the term—the program e that is being typed

• the type of the term—which classifies what the program computes

We read Γ ⊢ e : σ as “the program e has type σ in context Γ.”

The context Γ consists of (variable, type) pairs. E.g. the context Γ = x : σ, y : τ declares two free variables:

• x, which stands for a term of type σ

• y, which stands for a term of type τ

These are in no particular order: the context x : σ, y : τ is the same as the context y : τ, x : σ.

Thus, we can read the judgement x : τ ⊢ e : σ as follows: “assuming that the free variable x stands for a program
that computes a value of type τ , the program e computes a value of type σ.”

We will only say that “e is a term” if there exist Γ and σ such that the judgement Γ ⊢ e : σ is evident. However,
we will identify a larger class of programs, which we will call pre-terms. These will have the same ‘shape’ as
terms, but they will not necessary be well-typed. In short, the well-typed pre-terms will be called terms.

Finally, in this unit we will only consider so-called simple types, which will come from an inductively generated
syntax (see next section).

Wednesday 18th October, 2023

3 A little language of numbers and strings

To illustrate the aforementioned concepts we will present the statics of a language of numbers and strings.

The abstract syntax, types, and pre-terms of the language are presented by the following syntax chart.

types τ ::= Num numbers
Str strings

pre-terms e ::= x variables
num[n] numeral
str[s] string literals
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ++ e2 concatenation
len(e) |e| length
let(e1;x. e2) letx ⇐ e1 in e2 let-definition

This notation is sometimes called an extended Backus-Naur form. It generates syntax trees.

The first symbol represents the syntactic category (e.g. type τ , expression e, etc.).

The second column (immediately to the right of ::=) is the abstract syntax: it corresponds closely to the way
you would represent the expression in a high-level functional programming language as an abstract syntax tree.
Subscripted occurrences (e.g. e1, e2) are recursive occurrences of the same syntactic element. For example,
cat(e1; e2) is an expression, provided e1 and e2 are also expressions. We tacitly assume n ∈ N and s ∈ Σ∗ for
some alphabet Σ. We also tacitly assume that variables x come from some predetermined, infinite supply.

The third column is the concrete syntax: it is a user-friendly abbreviation for the abstract syntax.

In this language a type τ is either a Num or a Str. A pre-term e is given by one of the many forms listed above.

The following rules generate the typing judgements, and hence the well-typed terms of the language.

VaR

Γ, x : σ ⊢ x : σ

Num
n ∈ N

Γ ⊢ num[n] : Num

StR
s ∈ Σ∗

Γ ⊢ str[s] : Str

Plus
Γ ⊢ e1 : Num Γ ⊢ e2 : Num

Γ ⊢ plus(e1; e2) : Num

Times
Γ ⊢ e1 : Num Γ ⊢ e2 : Num

Γ ⊢ times(e1; e2) : Num

Cat
Γ ⊢ e1 : Str Γ ⊢ e2 : Str

Γ ⊢ cat(e1; e2) : Str

Len
Γ ⊢ e : Str

Γ ⊢ len(e) : Num

Let
Γ ⊢ e1 : σ1 Γ, x : σ1 ⊢ e2 : σ2

Γ ⊢ let(e1;x. e2) : σ2

Some points about variables and binding:

• Writing Γ, x : σ insinuates that x does not occur elsewhere in Γ.

• x is bound within e2 in let(e1;x. e2). Thus, it is subject to α-conversion.

An example derivation; for any s ∈ Σ∗:

x : Str ⊢ x : Str

s ∈ Σ∗

x : Str ⊢ str[s] : Str

x : Str ⊢ cat(x; str[s]) : Str

x : Str, y : Str ⊢ y : Str

x : Str, y : Str ⊢ len(y) : Num

1 ∈ N
x : Str, y : Str ⊢ num[1] : Num

x : Str, y : Str ⊢ plus(len(y); num[1]) : Num

x : Str ⊢ let(cat(x; str[s]); y. plus(len(y); num[1])) : Num

In words: if we plug in a program that computes a string for x : Str, this program will append the string s ∈ Σ∗

to it; it will then compute its length, and add 1 to it.

2

	The phase distinction
	Typing judgements
	A little language of numbers and strings

