
COMSM0067: Advanced Topics in Programming Languages

Problem Sheet 1
Alex Kavvos

1. Write down a derivation of the judgement

succ(succ(succ(zero))) odd

Solution:

zero even
EvenZ

succ(zero) odd
Odd

succ(succ(zero)) even
Even

succ(succ(succ(zero))) odd
Odd

2. (i) Write down the rules that generate lists of natural numbers.

(ii) Write down the associated induction principle.

(iii) In your notation, write a derivation of the judgement that [0, 1] is a list.

Solution:

(i)

Nil

nil list

Cons
n nat xs list
cons(n, xs) list

This is of course a mathematical restatement of the Haskell data types
data Nat = Zero | Succ Nat
data NatList = Nil | Cons Nat NatList

(ii) Let P be a property of the lists. If

• P(nil), and

• whenever n nat and P(xs) we know that P(cons(n, xs))

then P(xs) for all xs list.

(There is also another principle that additionally inducts on numbers.)

Tuesday 29th October, 2024



(iii)

zero nat
Zero

zero nat
Zero

succ(zero) nat
Succ

nil list
Nil

cons(succ(zero), nil) list
Cons

cons(zero, cons(succ(zero), nil)) list
Cons

3. Prove that the following rule is derivable.

n even
succ(succ(n)) even

Solution: To prove that a rule is derivable we need to show that we can use a
derivation of its premise as a ‘module’ or component in proving its conclusion.

Hence, let as assume we have a derivation of the premise:

...
n even

We can use this to derive the conclusion, using the following two rule applications:

...
n even

succ(n) odd
Odd

succ(succ(n)) even
Even

4. Prove that the following rule is admissible.

n even
n nat

(You might need to strengthen this statement a bit.)

Solution: In order to handle odd numbers, we strengthen the statement by proving
that both of the following rules are admissible:

n even
n nat

n odd
n nat

We do so by mutual induction on the derivations of n even and n odd.

2



Case(EvenZ). Suppose that n even holds by virtue of the rule ZeroE. This is to
say that the derivation of n even is of the form

zero even
EvenZ

(and hence that n = zero). Then, by the rule Zero for natural numbers, we know
that

zero nat
Zero

Recalling that n = zero, this proves that n nat.

Case(Even). Suppose that n even holds by virtue of the rule Even. That is to
say that the derivation of n even is of the form

...
x odd

succ(x) even
Even

(and hence that n = succ(x) for some x). Then, as x odd we have by the induc-
tion hypothesis that x nat. Given a derivation fo this judgement we can use the
rule Succ of natural numbers to deduce that

...
x nat

succ(x) nat
Succ

Recalling that n = succ(x), this proves that n nat.

Case(Odd). Suppose that n odd holds by virtue of the rule Odd. That is to say
that the derivation of n odd is of the form

...
x even

succ(x) odd
Odd

(and hence that n = succ(x) for some x). Then, as x even we have by the
induction hypothesis that x nat. Given a derivation fo this judgement we can
use the rule Succ of natural numbers to deduce that

...
x nat

succ(x) nat
Succ

Recalling that n = succ(x), this proves that n nat.

3



Remark: Notice that the structure of the proof for the rule Odd is identical to
that for Even; one could have just said “similar to the Odd case” and avoided a
lot of work.

Remark: Notice that this proof is very similar to defining the following two Haskell
functions by mutual recursion:

data Nat = Zero | Succ Nat

data Even = Zero | Succ Odd
data Odd = Succ Even

evens ::ۏ Even -> Nat
evens Zero = Zero
evens (Succ x) = Succ (odds x)

odds ::ۏ Odd -> Nat
odds (Succ x) = Succ (evens x)

5. (∗) All the judgements we have seen up to this point have been unary, in the sense that
they referred to only one entity. For example, the judgement n nat only refers to the
object n.

However, judgements can have arbitrary arity, and can thus define arbitrary relations
between an arbitrary number of objects. For example, the following ternary judgment
sum(a, b, c) defines a relation between three objects: a, b and c.

Base
b nat

sum(zero, b, b)

Ind
sum(a, b, c)

sum(succ(a), b, succ(c))

The judgement sum(a, b, c) can be written in more familiar notation as a+ b = c.

Such judgements can be used—amongst countless other things—to define functions.
This exercise is about showing that the above rules define the addition function.

(i) Write down a derivation of sum(succ(zero), succ(zero), succ(succ(zero))).

(ii) Restate the above rules as a Haskell function on the data type
data Nat = Zero | Succ Nat

Does your code use pattern matching? Discuss its relation to the rules given above.

(iii) Prove that if sum(a, b, c) then a nat, b nat, and c nat.

(iv) (Existence) Prove that if a nat and b nat then there exists a c nat such that
sum(a, b, c).

(v) (Uniqueness) Prove that if sum(a, b, c) and sum(a, b, c′) it must be that c = c′.

4



(vi) Conclude that sum(a, b, c) indeed defines a function on natural numbers.

Solution:

(ii)
sum ::ۏ Nat -> Nat -> Nat
sum Zero b = b
sum (Succ a) b = Succ (sum a b)

(iii) We prove the claim by induction on the derivation of sum(a, b, c).

Case(Base). If the derivation is of the form

...
b nat

sum(zero, b, b)
Base

then we know (i) that zero nat by the rule Zero, and (ii) that b nat, because
it is a premise of the rule Base. So all three of zero, b, and b are natural
numbers.

Case(Ind). If the derivation is of the form

...
sum(a, b, c)

sum(succ(a), b, succ(c))
Ind

then by the inductive hypothesis (IH) we know that a nat, b nat, and
c nat. Then,

• As a nat, by the rule Succ of natural numbers we deduce that succ(a) nat.

• As c nat, by the rule Succ of natural numbers we deduce that succ(c) nat.

Therefore, all three of succ(a), b and succ(c) are natural numbers.

(iv) We prove the claim by induction on the derivation of a nat.

Case(Zero). If the derivation is of the form

zero nat

(so in fact a
def
= zero) then we can use the rule Base to prove that

sum(zero, b, b)

Hence, there does exist a c such that sum(a, b, c), and that c is in fact b.

5



Case(Succ). If the derivation is of the form

...
x nat

succ(x) nat
Succ

(which is to say that a = succ(x) for some x). Then, by the IH applied
to x nat, we know that there exists a c′ such that sum(x, b, c′). Given a
derivation of this judgement, we use the rule Ind to deduce that

...
sum(x, b, c′)

sum(succ(x), b, succ(c′))
Ind

Recalling that a = succ(x), we see that there does exist a c so that sum(a, b, c),
namely c

def
= succ(c′).

Note: Notice that this proof is essentially just a regular natural number
induction on a. Also, notice that it is very similar to the function definition
given in Haskell above.

(v) We prove the claim by induction on the derivation of sum(a, b, c).

Case(Base). Suppose the derivation is of the form

sum(zero, b, b)

(which is to say that a = zero and c = b). By assumption we also know that
sum(zero, b, c′) for some c′. As the first component of this judgement is a
zero, its derivation can only be of the form

sum(zero, b, b)

(no other rule has a zero in the first component!). Thus, c′ = b = c.

Case(Ind). Suppose the derivation is of the form

...
sum(x, b, y)

sum(succ(x), b, succ(y))
Ind

(which is to say that a = succ(x) and c = succ(y) for some x and y). Consider
the derivation of sum(a, b, c′). As a = succ(x), this can only be of the form

...
sum(x, b, y′)

sum(succ(x), b, succ(y′))
Ind

6



for some y′ (no other rule matches the shape!). So, in fact, c′ = succ(y′).

At this point we have derivations of sum(x, b, y) and sum(x, b, y′). By the
IH, we obtain that y = y′. Hence c = succ(y) = succ(y′) = c′.

7


